Musielak-Orlicz-Sobolev 空间 Wk,Φ(Ω)$W^{k,\Phi }(\Omega)$ 中光滑函数的密度

Pub Date : 2024-02-23 DOI:10.1002/mana.202300232
Anna Kamińska, Mariusz Żyluk
{"title":"Musielak-Orlicz-Sobolev 空间 Wk,Φ(Ω)$W^{k,\\Phi }(\\Omega)$ 中光滑函数的密度","authors":"Anna Kamińska,&nbsp;Mariusz Żyluk","doi":"10.1002/mana.202300232","DOIUrl":null,"url":null,"abstract":"<p>We consider here Musielak–Orlicz–Sobolev (MOS) spaces <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>W</mi>\n <mrow>\n <mi>k</mi>\n <mo>,</mo>\n <mi>Φ</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$W^{k,\\Phi }(\\Omega)$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mi>Ω</mi>\n <annotation>$\\Omega$</annotation>\n </semantics></math> is an open subset of <span></span><math>\n <semantics>\n <msup>\n <mi>R</mi>\n <mi>d</mi>\n </msup>\n <annotation>$\\mathbb {R}^d$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>∈</mo>\n <mi>N</mi>\n <mo>,</mo>\n </mrow>\n <annotation>$k\\in \\mathbb {N,}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mi>Φ</mi>\n <annotation>$\\Phi$</annotation>\n </semantics></math> is a Musielak–Orlicz function. The main outcomes consist of the results on density of the space of compactly supported smooth functions <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>C</mi>\n <mi>C</mi>\n <mi>∞</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$C_C^\\infty (\\Omega)$</annotation>\n </semantics></math> in <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>W</mi>\n <mrow>\n <mi>k</mi>\n <mo>,</mo>\n <mi>Φ</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$W^{k,\\Phi }(\\Omega)$</annotation>\n </semantics></math>. One section is devoted to compare the various conditions on <span></span><math>\n <semantics>\n <mi>Φ</mi>\n <annotation>$\\Phi$</annotation>\n </semantics></math> appearing in the literature in the context of maximal operator and density theorems in MOS spaces. The assumptions on <span></span><math>\n <semantics>\n <mi>Φ</mi>\n <annotation>$\\Phi$</annotation>\n </semantics></math> we apply here are substantially weaker than in the earlier papers on the topics of approximation by smooth functions. One of the reasons is that in the process of proving density theorems, we do not use the fact that the Hardy–Littlewood maximal operator on Musielak–Orlicz space <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>L</mi>\n <mi>Φ</mi>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$L^\\Phi (\\Omega)$</annotation>\n </semantics></math> is bounded, a standard tool employed in density results for different types of Sobolev spaces. We show in particular that under some regularity assumptions on <span></span><math>\n <semantics>\n <mi>Φ</mi>\n <annotation>$\\Phi$</annotation>\n </semantics></math>, (A1) and <span></span><math>\n <semantics>\n <msub>\n <mi>Δ</mi>\n <mn>2</mn>\n </msub>\n <annotation>$\\Delta _2$</annotation>\n </semantics></math> that are not sufficient for the maximal operator to be bounded, the space of <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>C</mi>\n <mi>C</mi>\n <mi>∞</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>d</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$C_C^\\infty (\\mathbb {R}^d)$</annotation>\n </semantics></math> is dense in <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>W</mi>\n <mrow>\n <mi>k</mi>\n <mo>,</mo>\n <mi>Φ</mi>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$W^{k,\\Phi }(\\Omega)$</annotation>\n </semantics></math>. In the case of variable exponent Sobolev space <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>W</mi>\n <mrow>\n <mi>k</mi>\n <mo>,</mo>\n <mi>p</mi>\n <mo>(</mo>\n <mo>·</mo>\n <mo>)</mo>\n </mrow>\n </msup>\n <mrow>\n <mo>(</mo>\n <msup>\n <mi>R</mi>\n <mi>d</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$W^{k,p(\\cdot)}(\\mathbb {R}^d)$</annotation>\n </semantics></math>, we obtain the similar density result under the assumption that <span></span><math>\n <semantics>\n <mrow>\n <mi>Φ</mi>\n <mrow>\n <mo>(</mo>\n <mi>x</mi>\n <mo>,</mo>\n <mi>t</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <msup>\n <mi>t</mi>\n <mrow>\n <mi>p</mi>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$\\Phi (x,t) = t^{p(x)}$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>p</mi>\n <mo>(</mo>\n <mi>x</mi>\n <mo>)</mo>\n <mo>≥</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$p(x)\\ge 1$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>t</mi>\n <mo>≥</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$t\\ge 0$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>x</mi>\n <mo>∈</mo>\n <msup>\n <mi>R</mi>\n <mi>d</mi>\n </msup>\n </mrow>\n <annotation>$x\\in \\mathbb {R}^d$</annotation>\n </semantics></math>, satisfies the log-Hölder condition and the exponent function <span></span><math>\n <semantics>\n <mi>p</mi>\n <annotation>$p$</annotation>\n </semantics></math> is essentially bounded.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Density of smooth functions in Musielak–Orlicz–Sobolev spaces \\n \\n \\n \\n W\\n \\n k\\n ,\\n Φ\\n \\n \\n \\n (\\n Ω\\n )\\n \\n \\n $W^{k,\\\\Phi }(\\\\Omega)$\",\"authors\":\"Anna Kamińska,&nbsp;Mariusz Żyluk\",\"doi\":\"10.1002/mana.202300232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider here Musielak–Orlicz–Sobolev (MOS) spaces <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>W</mi>\\n <mrow>\\n <mi>k</mi>\\n <mo>,</mo>\\n <mi>Φ</mi>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>Ω</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$W^{k,\\\\Phi }(\\\\Omega)$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mi>Ω</mi>\\n <annotation>$\\\\Omega$</annotation>\\n </semantics></math> is an open subset of <span></span><math>\\n <semantics>\\n <msup>\\n <mi>R</mi>\\n <mi>d</mi>\\n </msup>\\n <annotation>$\\\\mathbb {R}^d$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>∈</mo>\\n <mi>N</mi>\\n <mo>,</mo>\\n </mrow>\\n <annotation>$k\\\\in \\\\mathbb {N,}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mi>Φ</mi>\\n <annotation>$\\\\Phi$</annotation>\\n </semantics></math> is a Musielak–Orlicz function. The main outcomes consist of the results on density of the space of compactly supported smooth functions <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>C</mi>\\n <mi>C</mi>\\n <mi>∞</mi>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <mi>Ω</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$C_C^\\\\infty (\\\\Omega)$</annotation>\\n </semantics></math> in <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>W</mi>\\n <mrow>\\n <mi>k</mi>\\n <mo>,</mo>\\n <mi>Φ</mi>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>Ω</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$W^{k,\\\\Phi }(\\\\Omega)$</annotation>\\n </semantics></math>. One section is devoted to compare the various conditions on <span></span><math>\\n <semantics>\\n <mi>Φ</mi>\\n <annotation>$\\\\Phi$</annotation>\\n </semantics></math> appearing in the literature in the context of maximal operator and density theorems in MOS spaces. The assumptions on <span></span><math>\\n <semantics>\\n <mi>Φ</mi>\\n <annotation>$\\\\Phi$</annotation>\\n </semantics></math> we apply here are substantially weaker than in the earlier papers on the topics of approximation by smooth functions. One of the reasons is that in the process of proving density theorems, we do not use the fact that the Hardy–Littlewood maximal operator on Musielak–Orlicz space <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>L</mi>\\n <mi>Φ</mi>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>Ω</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$L^\\\\Phi (\\\\Omega)$</annotation>\\n </semantics></math> is bounded, a standard tool employed in density results for different types of Sobolev spaces. We show in particular that under some regularity assumptions on <span></span><math>\\n <semantics>\\n <mi>Φ</mi>\\n <annotation>$\\\\Phi$</annotation>\\n </semantics></math>, (A1) and <span></span><math>\\n <semantics>\\n <msub>\\n <mi>Δ</mi>\\n <mn>2</mn>\\n </msub>\\n <annotation>$\\\\Delta _2$</annotation>\\n </semantics></math> that are not sufficient for the maximal operator to be bounded, the space of <span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>C</mi>\\n <mi>C</mi>\\n <mi>∞</mi>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>d</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$C_C^\\\\infty (\\\\mathbb {R}^d)$</annotation>\\n </semantics></math> is dense in <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>W</mi>\\n <mrow>\\n <mi>k</mi>\\n <mo>,</mo>\\n <mi>Φ</mi>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <mi>Ω</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$W^{k,\\\\Phi }(\\\\Omega)$</annotation>\\n </semantics></math>. In the case of variable exponent Sobolev space <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>W</mi>\\n <mrow>\\n <mi>k</mi>\\n <mo>,</mo>\\n <mi>p</mi>\\n <mo>(</mo>\\n <mo>·</mo>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n <mrow>\\n <mo>(</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>d</mi>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$W^{k,p(\\\\cdot)}(\\\\mathbb {R}^d)$</annotation>\\n </semantics></math>, we obtain the similar density result under the assumption that <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>Φ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>,</mo>\\n <mi>t</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <msup>\\n <mi>t</mi>\\n <mrow>\\n <mi>p</mi>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$\\\\Phi (x,t) = t^{p(x)}$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>p</mi>\\n <mo>(</mo>\\n <mi>x</mi>\\n <mo>)</mo>\\n <mo>≥</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$p(x)\\\\ge 1$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>t</mi>\\n <mo>≥</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$t\\\\ge 0$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>x</mi>\\n <mo>∈</mo>\\n <msup>\\n <mi>R</mi>\\n <mi>d</mi>\\n </msup>\\n </mrow>\\n <annotation>$x\\\\in \\\\mathbb {R}^d$</annotation>\\n </semantics></math>, satisfies the log-Hölder condition and the exponent function <span></span><math>\\n <semantics>\\n <mi>p</mi>\\n <annotation>$p$</annotation>\\n </semantics></math> is essentially bounded.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们在此考虑 Musielak-Orlicz-Sobolev (MOS) 空间 , 其中 , 是 , 的开放子集 , 是 Musielak-Orlicz 函数。主要成果包括关于 .MOS 中紧凑支撑光滑函数空间密度的结果。其中一节专门比较了文献中出现的关于 MOS 空间中最大算子和密度定理的各种条件。我们在这里使用的假定条件比之前关于光滑函数逼近主题的论文要弱得多。其中一个原因是,在证明密度定理的过程中,我们没有使用穆西拉克-奥利兹空间上的哈迪-利特尔伍德最大算子是有界的这一事实,而这是不同类型索波列夫空间密度结果中使用的标准工具。我们特别证明,在 , (A1) 和不足以使最大算子有界的一些正则性假设下,的空间在 。 在变指数 Sobolev 空间的情况下,我们在 , , , 满足 log-Hölder 条件和指数函数本质上有界的假设下,得到了类似的密度结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Density of smooth functions in Musielak–Orlicz–Sobolev spaces W k , Φ ( Ω ) $W^{k,\Phi }(\Omega)$

We consider here Musielak–Orlicz–Sobolev (MOS) spaces W k , Φ ( Ω ) $W^{k,\Phi }(\Omega)$ , where Ω $\Omega$ is an open subset of R d $\mathbb {R}^d$ , k N , $k\in \mathbb {N,}$ and Φ $\Phi$ is a Musielak–Orlicz function. The main outcomes consist of the results on density of the space of compactly supported smooth functions C C ( Ω ) $C_C^\infty (\Omega)$ in W k , Φ ( Ω ) $W^{k,\Phi }(\Omega)$ . One section is devoted to compare the various conditions on Φ $\Phi$ appearing in the literature in the context of maximal operator and density theorems in MOS spaces. The assumptions on Φ $\Phi$ we apply here are substantially weaker than in the earlier papers on the topics of approximation by smooth functions. One of the reasons is that in the process of proving density theorems, we do not use the fact that the Hardy–Littlewood maximal operator on Musielak–Orlicz space L Φ ( Ω ) $L^\Phi (\Omega)$ is bounded, a standard tool employed in density results for different types of Sobolev spaces. We show in particular that under some regularity assumptions on Φ $\Phi$ , (A1) and Δ 2 $\Delta _2$ that are not sufficient for the maximal operator to be bounded, the space of C C ( R d ) $C_C^\infty (\mathbb {R}^d)$ is dense in W k , Φ ( Ω ) $W^{k,\Phi }(\Omega)$ . In the case of variable exponent Sobolev space W k , p ( · ) ( R d ) $W^{k,p(\cdot)}(\mathbb {R}^d)$ , we obtain the similar density result under the assumption that Φ ( x , t ) = t p ( x ) $\Phi (x,t) = t^{p(x)}$ , p ( x ) 1 $p(x)\ge 1$ , t 0 $t\ge 0$ , x R d $x\in \mathbb {R}^d$ , satisfies the log-Hölder condition and the exponent function p $p$ is essentially bounded.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信