{"title":"湍流扩散对 ELM 尺寸和 SOL 宽度的影响","authors":"Nami Li, X.Q. Xu, P.H. Diamond, Y.F. Wang, X. Lin, N. Yan, G.S. Xu","doi":"10.1017/s0022377824000199","DOIUrl":null,"url":null,"abstract":"BOUT++ turbulence simulations were performed to investigate the impact of turbulence spreading on the edge localized mode (ELM) size and divertor heat flux width <jats:inline-formula> <jats:alternatives> <jats:tex-math>$({\\lambda _q})$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377824000199_inline1.png\" /> </jats:alternatives> </jats:inline-formula> broadening in small ELM regimes. This study is motivated by EAST experiments. BOUT++ linear simulations of a pedestal radial electric field (<jats:italic>E<jats:sub>r</jats:sub></jats:italic>) scan show that the dominant toroidal number mode (<jats:italic>n</jats:italic>) shifts from high-<jats:italic>n</jats:italic> to low-<jats:italic>n</jats:italic>, with a narrow mode spectrum, and the maximum linear growth rate increases as the pedestal <jats:italic>E<jats:sub>r</jats:sub></jats:italic> well deepens. The nonlinear simulations show that as the net <jats:italic>E</jats:italic> × <jats:italic>B</jats:italic> pedestal flow increases, the pressure fluctuation level and its inward penetration beyond the top of the pedestal both increase. This leads to a transition from small ELMs to large ELMs. Both inward and outward turbulence spreading are sensitive to the scrape-off-layer (SOL) plasma profiles. The inward turbulence spreading increases for the steep SOL profiles, leading to increasing pedestal energy loss in the small ELM regime. The SOL width <jats:inline-formula> <jats:alternatives> <jats:tex-math>$({\\lambda _q})$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377824000199_inline2.png\" /> </jats:alternatives> </jats:inline-formula> is significantly broadened progressing from the ELM-free to small ELM regime, due to the onset of strong radial turbulent transport. The extent of the SOL width <jats:inline-formula> <jats:alternatives> <jats:tex-math>$({\\lambda _q})$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377824000199_inline3.png\" /> </jats:alternatives> </jats:inline-formula> broadening depends strongly on outward turbulence spreading. The fluctuation energy intensity flux <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\varGamma _\\varepsilon }$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377824000199_inline4.png\" /> </jats:alternatives> </jats:inline-formula> at the separatrix can be enhanced by increasing either pedestal <jats:italic>E<jats:sub>r</jats:sub></jats:italic> flow shear or local SOL pressure gradient. The <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\lambda _q}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377824000199_inline5.png\" /> </jats:alternatives> </jats:inline-formula> is broadened as the fluctuation energy intensity flux <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\varGamma _\\varepsilon }$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0022377824000199_inline6.png\" /> </jats:alternatives> </jats:inline-formula> at the last close flux surface (LCFS) increases. Local SOL <jats:italic>E</jats:italic> × <jats:italic>B</jats:italic> flow shear will restrain outward turbulence spreading and the associated heat flux width broadening. Operating in H-mode with small ELMs has the potential to solve two critical problems: reducing the ELM size and broadening the SOL width.","PeriodicalId":16846,"journal":{"name":"Journal of Plasma Physics","volume":"1 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turbulence spreading effects on the ELM size and SOL width\",\"authors\":\"Nami Li, X.Q. Xu, P.H. Diamond, Y.F. Wang, X. Lin, N. Yan, G.S. Xu\",\"doi\":\"10.1017/s0022377824000199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"BOUT++ turbulence simulations were performed to investigate the impact of turbulence spreading on the edge localized mode (ELM) size and divertor heat flux width <jats:inline-formula> <jats:alternatives> <jats:tex-math>$({\\\\lambda _q})$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022377824000199_inline1.png\\\" /> </jats:alternatives> </jats:inline-formula> broadening in small ELM regimes. This study is motivated by EAST experiments. BOUT++ linear simulations of a pedestal radial electric field (<jats:italic>E<jats:sub>r</jats:sub></jats:italic>) scan show that the dominant toroidal number mode (<jats:italic>n</jats:italic>) shifts from high-<jats:italic>n</jats:italic> to low-<jats:italic>n</jats:italic>, with a narrow mode spectrum, and the maximum linear growth rate increases as the pedestal <jats:italic>E<jats:sub>r</jats:sub></jats:italic> well deepens. The nonlinear simulations show that as the net <jats:italic>E</jats:italic> × <jats:italic>B</jats:italic> pedestal flow increases, the pressure fluctuation level and its inward penetration beyond the top of the pedestal both increase. This leads to a transition from small ELMs to large ELMs. Both inward and outward turbulence spreading are sensitive to the scrape-off-layer (SOL) plasma profiles. The inward turbulence spreading increases for the steep SOL profiles, leading to increasing pedestal energy loss in the small ELM regime. The SOL width <jats:inline-formula> <jats:alternatives> <jats:tex-math>$({\\\\lambda _q})$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022377824000199_inline2.png\\\" /> </jats:alternatives> </jats:inline-formula> is significantly broadened progressing from the ELM-free to small ELM regime, due to the onset of strong radial turbulent transport. The extent of the SOL width <jats:inline-formula> <jats:alternatives> <jats:tex-math>$({\\\\lambda _q})$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022377824000199_inline3.png\\\" /> </jats:alternatives> </jats:inline-formula> broadening depends strongly on outward turbulence spreading. The fluctuation energy intensity flux <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\\\varGamma _\\\\varepsilon }$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022377824000199_inline4.png\\\" /> </jats:alternatives> </jats:inline-formula> at the separatrix can be enhanced by increasing either pedestal <jats:italic>E<jats:sub>r</jats:sub></jats:italic> flow shear or local SOL pressure gradient. The <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\\\lambda _q}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022377824000199_inline5.png\\\" /> </jats:alternatives> </jats:inline-formula> is broadened as the fluctuation energy intensity flux <jats:inline-formula> <jats:alternatives> <jats:tex-math>${\\\\varGamma _\\\\varepsilon }$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0022377824000199_inline6.png\\\" /> </jats:alternatives> </jats:inline-formula> at the last close flux surface (LCFS) increases. Local SOL <jats:italic>E</jats:italic> × <jats:italic>B</jats:italic> flow shear will restrain outward turbulence spreading and the associated heat flux width broadening. Operating in H-mode with small ELMs has the potential to solve two critical problems: reducing the ELM size and broadening the SOL width.\",\"PeriodicalId\":16846,\"journal\":{\"name\":\"Journal of Plasma Physics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Plasma Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1017/s0022377824000199\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Plasma Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1017/s0022377824000199","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
摘要
进行了BOUT++湍流模拟,以研究湍流扩散对边缘局部模式(ELM)尺寸和小ELM状态下分流器热通量宽度$({\lambda _q})$拓宽的影响。这项研究的动机来自 EAST 实验。基座径向电场(Er)扫描的BOUT++线性模拟表明,主要环形数模(n)从高n转变为低n,模谱较窄,最大线性增长率随着基座Er井的加深而增加。非线性模拟显示,随着 E × B 基座净流的增加,压力波动水平及其向基座顶部以外的内穿透力都会增加。这导致小 ELM 向大 ELM 过渡。向内和向外的湍流扩散对刮离层(SOL)等离子体剖面都很敏感。陡峭的 SOL 剖面会增加向内的湍流扩散,从而导致小 ELM 状态下基座能量损失的增加。SOL 宽度 $({\lambda _q})$在从无 ELM 到小 ELM 状态的过程中明显变宽,这是由于开始出现强径向湍流输运。SOL宽度$({\lambda _q})$的扩大程度在很大程度上取决于向外的湍流扩散。在分离矩阵处的波动能量强度通量${\varGamma _\varepsilon }$可以通过增加基底二流剪切力或局部SOL压力梯度来增强。随着最后一个近通量面(LCFS)上波动能量强度通量 ${\varGamma _\varepsilon }$ 的增加,${\lambda _q}$ 的范围也会扩大。局部 SOL E × B 流切变将抑制湍流向外扩展以及相关的热通量宽度扩大。在 H 模式下运行小 ELM 有可能解决两个关键问题:减小 ELM 尺寸和拓宽 SOL 宽度。
Turbulence spreading effects on the ELM size and SOL width
BOUT++ turbulence simulations were performed to investigate the impact of turbulence spreading on the edge localized mode (ELM) size and divertor heat flux width $({\lambda _q})$ broadening in small ELM regimes. This study is motivated by EAST experiments. BOUT++ linear simulations of a pedestal radial electric field (Er) scan show that the dominant toroidal number mode (n) shifts from high-n to low-n, with a narrow mode spectrum, and the maximum linear growth rate increases as the pedestal Er well deepens. The nonlinear simulations show that as the net E × B pedestal flow increases, the pressure fluctuation level and its inward penetration beyond the top of the pedestal both increase. This leads to a transition from small ELMs to large ELMs. Both inward and outward turbulence spreading are sensitive to the scrape-off-layer (SOL) plasma profiles. The inward turbulence spreading increases for the steep SOL profiles, leading to increasing pedestal energy loss in the small ELM regime. The SOL width $({\lambda _q})$ is significantly broadened progressing from the ELM-free to small ELM regime, due to the onset of strong radial turbulent transport. The extent of the SOL width $({\lambda _q})$ broadening depends strongly on outward turbulence spreading. The fluctuation energy intensity flux ${\varGamma _\varepsilon }$ at the separatrix can be enhanced by increasing either pedestal Er flow shear or local SOL pressure gradient. The ${\lambda _q}$ is broadened as the fluctuation energy intensity flux ${\varGamma _\varepsilon }$ at the last close flux surface (LCFS) increases. Local SOL E × B flow shear will restrain outward turbulence spreading and the associated heat flux width broadening. Operating in H-mode with small ELMs has the potential to solve two critical problems: reducing the ELM size and broadening the SOL width.
期刊介绍:
JPP aspires to be the intellectual home of those who think of plasma physics as a fundamental discipline. The journal focuses on publishing research on laboratory plasmas (including magnetically confined and inertial fusion plasmas), space physics and plasma astrophysics that takes advantage of the rapid ongoing progress in instrumentation and computing to advance fundamental understanding of multiscale plasma physics. The Journal welcomes submissions of analytical, numerical, observational and experimental work: both original research and tutorial- or review-style papers, as well as proposals for its Lecture Notes series.