R.i.p. Geomean Speedup 使用等功(或等时)调和均值加速代替

IF 1.4 3区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Lieven Eeckhout
{"title":"R.i.p. Geomean Speedup 使用等功(或等时)调和均值加速代替","authors":"Lieven Eeckhout","doi":"10.1109/LCA.2024.3361925","DOIUrl":null,"url":null,"abstract":"How to accurately summarize average performance is challenging. While geometric mean speedup is prevalently used, it is meaningless. Instead, this paper argues for harmonic mean speedup which accurately summarizes how much faster a workload executes on a target system relative to a baseline. We propose the equal-work and equal-time harmonic mean speedup metrics to explicitly expose the different assumptions they make, and we further suggest that equal-work speedup is most relevant to computer architecture research. The paper demonstrates that which average speedup is used matters in practice as inappropriate averages may lead to incorrect conclusions.","PeriodicalId":51248,"journal":{"name":"IEEE Computer Architecture Letters","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"R.I.P. Geomean Speedup Use Equal-Work (Or Equal-Time) Harmonic Mean Speedup Instead\",\"authors\":\"Lieven Eeckhout\",\"doi\":\"10.1109/LCA.2024.3361925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How to accurately summarize average performance is challenging. While geometric mean speedup is prevalently used, it is meaningless. Instead, this paper argues for harmonic mean speedup which accurately summarizes how much faster a workload executes on a target system relative to a baseline. We propose the equal-work and equal-time harmonic mean speedup metrics to explicitly expose the different assumptions they make, and we further suggest that equal-work speedup is most relevant to computer architecture research. The paper demonstrates that which average speedup is used matters in practice as inappropriate averages may lead to incorrect conclusions.\",\"PeriodicalId\":51248,\"journal\":{\"name\":\"IEEE Computer Architecture Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Computer Architecture Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10419888/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Computer Architecture Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10419888/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

如何准确总结平均性能具有挑战性。虽然几何平均加速度被广泛使用,但它毫无意义。相反,本文主张使用谐波平均加速度,它能准确概括工作负载在目标系统上的执行速度相对于基线快多少。我们提出了等功和等时谐波平均加速度指标,明确揭示了它们所做的不同假设,并进一步提出等功加速度与计算机体系结构研究最为相关。本文证明,在实践中使用哪种平均加速度非常重要,因为不恰当的平均值可能会导致错误的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
R.I.P. Geomean Speedup Use Equal-Work (Or Equal-Time) Harmonic Mean Speedup Instead
How to accurately summarize average performance is challenging. While geometric mean speedup is prevalently used, it is meaningless. Instead, this paper argues for harmonic mean speedup which accurately summarizes how much faster a workload executes on a target system relative to a baseline. We propose the equal-work and equal-time harmonic mean speedup metrics to explicitly expose the different assumptions they make, and we further suggest that equal-work speedup is most relevant to computer architecture research. The paper demonstrates that which average speedup is used matters in practice as inappropriate averages may lead to incorrect conclusions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Computer Architecture Letters
IEEE Computer Architecture Letters COMPUTER SCIENCE, HARDWARE & ARCHITECTURE-
CiteScore
4.60
自引率
4.30%
发文量
29
期刊介绍: IEEE Computer Architecture Letters is a rigorously peer-reviewed forum for publishing early, high-impact results in the areas of uni- and multiprocessor computer systems, computer architecture, microarchitecture, workload characterization, performance evaluation and simulation techniques, and power-aware computing. Submissions are welcomed on any topic in computer architecture, especially but not limited to: microprocessor and multiprocessor systems, microarchitecture and ILP processors, workload characterization, performance evaluation and simulation techniques, compiler-hardware and operating system-hardware interactions, interconnect architectures, memory and cache systems, power and thermal issues at the architecture level, I/O architectures and techniques, independent validation of previously published results, analysis of unsuccessful techniques, domain-specific processor architectures (e.g., embedded, graphics, network, etc.), real-time and high-availability architectures, reconfigurable systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信