用 Atangana-Baleanu 算子分析模糊分数 Degasperis-Procesi 和 Camassa-Holm 方程

IF 1.8 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Azzh Saad Alshehry, Humaira Yasmin, Manzoor Ali Shah, Rasool Shah
{"title":"用 Atangana-Baleanu 算子分析模糊分数 Degasperis-Procesi 和 Camassa-Holm 方程","authors":"Azzh Saad Alshehry, Humaira Yasmin, Manzoor Ali Shah, Rasool Shah","doi":"10.1515/phys-2023-0191","DOIUrl":null,"url":null,"abstract":"This article presents a new approach for solving the fuzzy fractional Degasperis–Procesi (FFDP) and Camassa–Holm equations using the iterative transform method (ITM). The fractional Degasperis–Procesi (DP) and Camassa–Holm equations are extended from the classical DP and Camassa–Holm equations by incorporating fuzzy sets and fractional derivatives. The ITM is a powerful technique widely used for solving nonlinear differential equations. This approach transforms the fuzzy fractional differential equations into a series of ordinary differential equations, which are then solved iteratively using a recursive algorithm. Numerical simulations demonstrate the proposed approach’s accuracy and effectiveness. The results show that the ITM provides an efficient and accurate method for solving the FFDP and Camassa–Holm equations. The proposed method can be extended to solve other fuzzy fractional differential equations.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing fuzzy fractional Degasperis–Procesi and Camassa–Holm equations with the Atangana–Baleanu operator\",\"authors\":\"Azzh Saad Alshehry, Humaira Yasmin, Manzoor Ali Shah, Rasool Shah\",\"doi\":\"10.1515/phys-2023-0191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a new approach for solving the fuzzy fractional Degasperis–Procesi (FFDP) and Camassa–Holm equations using the iterative transform method (ITM). The fractional Degasperis–Procesi (DP) and Camassa–Holm equations are extended from the classical DP and Camassa–Holm equations by incorporating fuzzy sets and fractional derivatives. The ITM is a powerful technique widely used for solving nonlinear differential equations. This approach transforms the fuzzy fractional differential equations into a series of ordinary differential equations, which are then solved iteratively using a recursive algorithm. Numerical simulations demonstrate the proposed approach’s accuracy and effectiveness. The results show that the ITM provides an efficient and accurate method for solving the FFDP and Camassa–Holm equations. The proposed method can be extended to solve other fuzzy fractional differential equations.\",\"PeriodicalId\":48710,\"journal\":{\"name\":\"Open Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/phys-2023-0191\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/phys-2023-0191","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用迭代变换法(ITM)求解模糊分数德加斯佩里斯-普罗切斯方程(FFDP)和卡马萨-霍姆方程的新方法。分数 Degasperis-Procesi (DP) 和 Camassa-Holm 方程是在经典 DP 和 Camassa-Holm 方程的基础上结合模糊集和分数导数扩展而来的。ITM 是一种广泛用于求解非线性微分方程的强大技术。这种方法将模糊分数微分方程转化为一系列常微分方程,然后使用递归算法迭代求解。数值模拟证明了所提出方法的准确性和有效性。结果表明,ITM 为求解 FFDP 和 Camassa-Holm 方程提供了一种高效、精确的方法。所提出的方法还可扩展用于求解其他模糊分微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing fuzzy fractional Degasperis–Procesi and Camassa–Holm equations with the Atangana–Baleanu operator
This article presents a new approach for solving the fuzzy fractional Degasperis–Procesi (FFDP) and Camassa–Holm equations using the iterative transform method (ITM). The fractional Degasperis–Procesi (DP) and Camassa–Holm equations are extended from the classical DP and Camassa–Holm equations by incorporating fuzzy sets and fractional derivatives. The ITM is a powerful technique widely used for solving nonlinear differential equations. This approach transforms the fuzzy fractional differential equations into a series of ordinary differential equations, which are then solved iteratively using a recursive algorithm. Numerical simulations demonstrate the proposed approach’s accuracy and effectiveness. The results show that the ITM provides an efficient and accurate method for solving the FFDP and Camassa–Holm equations. The proposed method can be extended to solve other fuzzy fractional differential equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Physics
Open Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
3.20
自引率
5.30%
发文量
82
审稿时长
18 weeks
期刊介绍: Open Physics is a peer-reviewed, open access, electronic journal devoted to the publication of fundamental research results in all fields of physics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信