Azzh Saad Alshehry, Humaira Yasmin, Manzoor Ali Shah, Rasool Shah
{"title":"用 Atangana-Baleanu 算子分析模糊分数 Degasperis-Procesi 和 Camassa-Holm 方程","authors":"Azzh Saad Alshehry, Humaira Yasmin, Manzoor Ali Shah, Rasool Shah","doi":"10.1515/phys-2023-0191","DOIUrl":null,"url":null,"abstract":"This article presents a new approach for solving the fuzzy fractional Degasperis–Procesi (FFDP) and Camassa–Holm equations using the iterative transform method (ITM). The fractional Degasperis–Procesi (DP) and Camassa–Holm equations are extended from the classical DP and Camassa–Holm equations by incorporating fuzzy sets and fractional derivatives. The ITM is a powerful technique widely used for solving nonlinear differential equations. This approach transforms the fuzzy fractional differential equations into a series of ordinary differential equations, which are then solved iteratively using a recursive algorithm. Numerical simulations demonstrate the proposed approach’s accuracy and effectiveness. The results show that the ITM provides an efficient and accurate method for solving the FFDP and Camassa–Holm equations. The proposed method can be extended to solve other fuzzy fractional differential equations.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing fuzzy fractional Degasperis–Procesi and Camassa–Holm equations with the Atangana–Baleanu operator\",\"authors\":\"Azzh Saad Alshehry, Humaira Yasmin, Manzoor Ali Shah, Rasool Shah\",\"doi\":\"10.1515/phys-2023-0191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a new approach for solving the fuzzy fractional Degasperis–Procesi (FFDP) and Camassa–Holm equations using the iterative transform method (ITM). The fractional Degasperis–Procesi (DP) and Camassa–Holm equations are extended from the classical DP and Camassa–Holm equations by incorporating fuzzy sets and fractional derivatives. The ITM is a powerful technique widely used for solving nonlinear differential equations. This approach transforms the fuzzy fractional differential equations into a series of ordinary differential equations, which are then solved iteratively using a recursive algorithm. Numerical simulations demonstrate the proposed approach’s accuracy and effectiveness. The results show that the ITM provides an efficient and accurate method for solving the FFDP and Camassa–Holm equations. The proposed method can be extended to solve other fuzzy fractional differential equations.\",\"PeriodicalId\":48710,\"journal\":{\"name\":\"Open Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/phys-2023-0191\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/phys-2023-0191","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Analyzing fuzzy fractional Degasperis–Procesi and Camassa–Holm equations with the Atangana–Baleanu operator
This article presents a new approach for solving the fuzzy fractional Degasperis–Procesi (FFDP) and Camassa–Holm equations using the iterative transform method (ITM). The fractional Degasperis–Procesi (DP) and Camassa–Holm equations are extended from the classical DP and Camassa–Holm equations by incorporating fuzzy sets and fractional derivatives. The ITM is a powerful technique widely used for solving nonlinear differential equations. This approach transforms the fuzzy fractional differential equations into a series of ordinary differential equations, which are then solved iteratively using a recursive algorithm. Numerical simulations demonstrate the proposed approach’s accuracy and effectiveness. The results show that the ITM provides an efficient and accurate method for solving the FFDP and Camassa–Holm equations. The proposed method can be extended to solve other fuzzy fractional differential equations.
期刊介绍:
Open Physics is a peer-reviewed, open access, electronic journal devoted to the publication of fundamental research results in all fields of physics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.