高速运行条件下高温超导磁悬浮的浮力测量

IF 1.8 3区 工程技术 Q3 PHYSICS, APPLIED
Shixin Zhang , Zigang Deng , Zhichuan Huang , Haitao Li , Xucheng Zhou , Weihua Zhang
{"title":"高速运行条件下高温超导磁悬浮的浮力测量","authors":"Shixin Zhang ,&nbsp;Zigang Deng ,&nbsp;Zhichuan Huang ,&nbsp;Haitao Li ,&nbsp;Xucheng Zhou ,&nbsp;Weihua Zhang","doi":"10.1016/j.cryogenics.2024.103808","DOIUrl":null,"url":null,"abstract":"<div><p>High-temperature superconducting (HTS) pinning magnetic levitation (maglev) has garnered significant attention in high-speed maglev transportation due to its inherent self-stability, low energy consumption, and absence of mechanical friction. Ensuring the safe and stable operation of HTS pinning maglev systems necessitates a dedicated focus on the performance and stability of HTS bulks levitated above the permanent magnetic guideway (PMG). Previous research has indicated that variations in the temperature within the HTS bulk can impact the levitation performance of the system. This temperature-related phenomenon occurs when the external magnetic field applied to the HTS bulk changes. However, it is noteworthy that previous levitation force tests for HTS magnetic levitation systems have been limited to quasi-static or low-speed studies. The exploration of dynamic levitation forces, particularly at high speeds, has remained constrained due to the associated high costs. Therefore, the objective of this study is to investigate dynamic levitation forces while the HTS pinning maglev system is in motion at high speeds, utilizing a self-developed ultra-high-speed maglev test rig. Initially, the relationship between the levitation force and the vertical displacement of the HTS pinning maglev system is examined based on quasi-static experiments. Subsequently, comparative studies are conducted to measure levitation forces at varying speeds. Finally, the correlation between running speed and dynamic levitation force is discussed. The investigation reveals that the levitation force experiences only a marginal decrease as the running speed increases. At a running speed of 240 km/h, the attenuation rate of the levitation force is approximately 2.478 %, demonstrating the commendable stability of HTS pinning maglev systems. The article concludes by presenting the dynamic levitation characteristics and their attenuation trends to speed. These findings can serve as valuable references for future design and practical implementation of HTS pinning maglev systems.</p></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Measurement of levitation force of high-temperature superconducting maglev under high-speed operation condition\",\"authors\":\"Shixin Zhang ,&nbsp;Zigang Deng ,&nbsp;Zhichuan Huang ,&nbsp;Haitao Li ,&nbsp;Xucheng Zhou ,&nbsp;Weihua Zhang\",\"doi\":\"10.1016/j.cryogenics.2024.103808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>High-temperature superconducting (HTS) pinning magnetic levitation (maglev) has garnered significant attention in high-speed maglev transportation due to its inherent self-stability, low energy consumption, and absence of mechanical friction. Ensuring the safe and stable operation of HTS pinning maglev systems necessitates a dedicated focus on the performance and stability of HTS bulks levitated above the permanent magnetic guideway (PMG). Previous research has indicated that variations in the temperature within the HTS bulk can impact the levitation performance of the system. This temperature-related phenomenon occurs when the external magnetic field applied to the HTS bulk changes. However, it is noteworthy that previous levitation force tests for HTS magnetic levitation systems have been limited to quasi-static or low-speed studies. The exploration of dynamic levitation forces, particularly at high speeds, has remained constrained due to the associated high costs. Therefore, the objective of this study is to investigate dynamic levitation forces while the HTS pinning maglev system is in motion at high speeds, utilizing a self-developed ultra-high-speed maglev test rig. Initially, the relationship between the levitation force and the vertical displacement of the HTS pinning maglev system is examined based on quasi-static experiments. Subsequently, comparative studies are conducted to measure levitation forces at varying speeds. Finally, the correlation between running speed and dynamic levitation force is discussed. The investigation reveals that the levitation force experiences only a marginal decrease as the running speed increases. At a running speed of 240 km/h, the attenuation rate of the levitation force is approximately 2.478 %, demonstrating the commendable stability of HTS pinning maglev systems. The article concludes by presenting the dynamic levitation characteristics and their attenuation trends to speed. These findings can serve as valuable references for future design and practical implementation of HTS pinning maglev systems.</p></div>\",\"PeriodicalId\":10812,\"journal\":{\"name\":\"Cryogenics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryogenics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011227524000286\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011227524000286","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

高温超导(HTS)引脚磁悬浮(磁悬浮)因其固有的自稳定性、低能耗和无机械摩擦等特点,在高速磁悬浮交通领域备受关注。要确保 HTS 引脚磁悬浮系统的安全稳定运行,就必须对悬浮在永磁导轨(PMG)上方的 HTS 块体的性能和稳定性进行专门研究。以往的研究表明,HTS 块体内部温度的变化会影响系统的悬浮性能。当施加在 HTS 块体上的外部磁场发生变化时,就会出现这种与温度有关的现象。然而,值得注意的是,以往针对 HTS 磁悬浮系统的悬浮力测试仅限于准静态或低速研究。由于相关成本较高,对动态悬浮力,尤其是高速悬浮力的探索仍然受到限制。因此,本研究的目的是利用自主研发的超高速磁悬浮试验台,研究 HTS 销轴磁悬浮系统在高速运动时的动态悬浮力。首先,基于准静态实验研究了悬浮力与 HTS 引脚式磁悬浮系统垂直位移之间的关系。随后,进行了比较研究,以测量不同速度下的悬浮力。最后,讨论了运行速度与动态悬浮力之间的相关性。研究结果表明,随着运行速度的增加,悬浮力只会出现微弱的下降。在运行速度为 240 公里/小时时,悬浮力的衰减率约为 2.478%,这表明 HTS 引脚式磁悬浮系统具有值得称道的稳定性。文章最后介绍了动态悬浮特性及其随速度的衰减趋势。这些研究结果可作为未来设计和实际应用 HTS 引脚式磁悬浮系统的宝贵参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measurement of levitation force of high-temperature superconducting maglev under high-speed operation condition

High-temperature superconducting (HTS) pinning magnetic levitation (maglev) has garnered significant attention in high-speed maglev transportation due to its inherent self-stability, low energy consumption, and absence of mechanical friction. Ensuring the safe and stable operation of HTS pinning maglev systems necessitates a dedicated focus on the performance and stability of HTS bulks levitated above the permanent magnetic guideway (PMG). Previous research has indicated that variations in the temperature within the HTS bulk can impact the levitation performance of the system. This temperature-related phenomenon occurs when the external magnetic field applied to the HTS bulk changes. However, it is noteworthy that previous levitation force tests for HTS magnetic levitation systems have been limited to quasi-static or low-speed studies. The exploration of dynamic levitation forces, particularly at high speeds, has remained constrained due to the associated high costs. Therefore, the objective of this study is to investigate dynamic levitation forces while the HTS pinning maglev system is in motion at high speeds, utilizing a self-developed ultra-high-speed maglev test rig. Initially, the relationship between the levitation force and the vertical displacement of the HTS pinning maglev system is examined based on quasi-static experiments. Subsequently, comparative studies are conducted to measure levitation forces at varying speeds. Finally, the correlation between running speed and dynamic levitation force is discussed. The investigation reveals that the levitation force experiences only a marginal decrease as the running speed increases. At a running speed of 240 km/h, the attenuation rate of the levitation force is approximately 2.478 %, demonstrating the commendable stability of HTS pinning maglev systems. The article concludes by presenting the dynamic levitation characteristics and their attenuation trends to speed. These findings can serve as valuable references for future design and practical implementation of HTS pinning maglev systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cryogenics
Cryogenics 物理-热力学
CiteScore
3.80
自引率
9.50%
发文量
0
审稿时长
2.1 months
期刊介绍: Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are: - Applications of superconductivity: magnets, electronics, devices - Superconductors and their properties - Properties of materials: metals, alloys, composites, polymers, insulations - New applications of cryogenic technology to processes, devices, machinery - Refrigeration and liquefaction technology - Thermodynamics - Fluid properties and fluid mechanics - Heat transfer - Thermometry and measurement science - Cryogenics in medicine - Cryoelectronics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信