针对认知型代理的深度强化学习程序性建构学习机制

IF 3.1 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Leonardo de Lellis Rossi, Eric Rohmer, Paula Dornhofer Paro Costa, Esther Luna Colombini, Alexandre da Silva Simões, Ricardo Ribeiro Gudwin
{"title":"针对认知型代理的深度强化学习程序性建构学习机制","authors":"Leonardo de Lellis Rossi, Eric Rohmer, Paula Dornhofer Paro Costa, Esther Luna Colombini, Alexandre da Silva Simões, Ricardo Ribeiro Gudwin","doi":"10.1007/s10846-024-02064-9","DOIUrl":null,"url":null,"abstract":"<p>Recent advancements in AI and deep learning have created a growing demand for artificial agents capable of performing tasks within increasingly complex environments. To address the challenges associated with continuous learning constraints and knowledge capacity in this context, cognitive architectures inspired by human cognition have gained significance. This study contributes to existing research by introducing a cognitive-attentional system employing a constructive neural network-based learning approach for continuous acquisition of procedural knowledge. We replace an incremental tabular Reinforcement Learning algorithm with a constructive neural network deep reinforcement learning mechanism for continuous sensorimotor knowledge acquisition, thereby enhancing the overall learning capacity. The primary emphasis of this modification centers on optimizing memory utilization and reducing training time. Our study presents a learning strategy that amalgamates deep reinforcement learning with procedural learning, mirroring the incremental learning process observed in human sensorimotor development. This approach is embedded within the CONAIM cognitive-attentional architecture, leveraging the cognitive tools of CST. The proposed learning mechanism allows the model to dynamically create and modify elements in its procedural memory, facilitating the reuse of previously acquired functions and procedures. Additionally, it equips the model with the capability to combine learned elements to effectively adapt to complex scenarios. A constructive neural network was employed, initiating with an initial hidden layer comprising one neuron. However, it possesses the capacity to adapt its internal architecture in response to its performance in procedural and sensorimotor learning tasks, inserting new hidden layers or neurons. Experimentation conducted through simulations involving a humanoid robot demonstrates the successful resolution of tasks that were previously unsolved through incremental knowledge acquisition. Throughout the training phase, the constructive agent achieved a minimum of 40% greater rewards and executed 8% more actions when compared to other agents. In the subsequent testing phase, the constructive agent exhibited a 15% increase in the number of actions performed in contrast to its counterparts.</p>","PeriodicalId":54794,"journal":{"name":"Journal of Intelligent & Robotic Systems","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Procedural Constructive Learning Mechanism with Deep Reinforcement Learning for Cognitive Agents\",\"authors\":\"Leonardo de Lellis Rossi, Eric Rohmer, Paula Dornhofer Paro Costa, Esther Luna Colombini, Alexandre da Silva Simões, Ricardo Ribeiro Gudwin\",\"doi\":\"10.1007/s10846-024-02064-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Recent advancements in AI and deep learning have created a growing demand for artificial agents capable of performing tasks within increasingly complex environments. To address the challenges associated with continuous learning constraints and knowledge capacity in this context, cognitive architectures inspired by human cognition have gained significance. This study contributes to existing research by introducing a cognitive-attentional system employing a constructive neural network-based learning approach for continuous acquisition of procedural knowledge. We replace an incremental tabular Reinforcement Learning algorithm with a constructive neural network deep reinforcement learning mechanism for continuous sensorimotor knowledge acquisition, thereby enhancing the overall learning capacity. The primary emphasis of this modification centers on optimizing memory utilization and reducing training time. Our study presents a learning strategy that amalgamates deep reinforcement learning with procedural learning, mirroring the incremental learning process observed in human sensorimotor development. This approach is embedded within the CONAIM cognitive-attentional architecture, leveraging the cognitive tools of CST. The proposed learning mechanism allows the model to dynamically create and modify elements in its procedural memory, facilitating the reuse of previously acquired functions and procedures. Additionally, it equips the model with the capability to combine learned elements to effectively adapt to complex scenarios. A constructive neural network was employed, initiating with an initial hidden layer comprising one neuron. However, it possesses the capacity to adapt its internal architecture in response to its performance in procedural and sensorimotor learning tasks, inserting new hidden layers or neurons. Experimentation conducted through simulations involving a humanoid robot demonstrates the successful resolution of tasks that were previously unsolved through incremental knowledge acquisition. Throughout the training phase, the constructive agent achieved a minimum of 40% greater rewards and executed 8% more actions when compared to other agents. In the subsequent testing phase, the constructive agent exhibited a 15% increase in the number of actions performed in contrast to its counterparts.</p>\",\"PeriodicalId\":54794,\"journal\":{\"name\":\"Journal of Intelligent & Robotic Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Intelligent & Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10846-024-02064-9\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10846-024-02064-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

近年来,人工智能和深度学习领域取得了长足进步,对能够在日益复杂的环境中执行任务的人工代理的需求也与日俱增。为了应对这种情况下与持续学习限制和知识能力相关的挑战,受人类认知启发的认知架构变得越来越重要。本研究在现有研究的基础上,引入了一种认知-注意力系统,该系统采用基于构造神经网络的学习方法来持续获取程序性知识。我们用构造性神经网络深度强化学习机制取代了增量表格式强化学习算法,用于连续获取感知运动知识,从而提高了整体学习能力。这一修改的主要重点在于优化记忆利用率和缩短训练时间。我们的研究提出了一种将深度强化学习与程序学习相结合的学习策略,反映了在人类感觉运动发展过程中观察到的增量学习过程。这种方法嵌入了 CONAIM 认知-注意架构,充分利用了 CST 的认知工具。所提出的学习机制允许模型动态地创建和修改其程序存储器中的元素,从而促进了对先前所获功能和程序的重复使用。此外,它还使模型具备了结合所学元素的能力,从而有效地适应复杂的场景。我们采用了一个构造神经网络,最初的隐藏层只有一个神经元。不过,它有能力根据其在程序和感觉运动学习任务中的表现调整内部结构,插入新的隐藏层或神经元。通过模拟仿人机器人进行的实验表明,通过增量知识的获取,它成功地解决了以前无法解决的任务。在整个训练阶段,与其他代理相比,建构代理获得的奖励至少增加了 40%,执行的行动增加了 8%。在随后的测试阶段,与其他代理相比,建设性代理执行的行动数量增加了 15%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Procedural Constructive Learning Mechanism with Deep Reinforcement Learning for Cognitive Agents

Recent advancements in AI and deep learning have created a growing demand for artificial agents capable of performing tasks within increasingly complex environments. To address the challenges associated with continuous learning constraints and knowledge capacity in this context, cognitive architectures inspired by human cognition have gained significance. This study contributes to existing research by introducing a cognitive-attentional system employing a constructive neural network-based learning approach for continuous acquisition of procedural knowledge. We replace an incremental tabular Reinforcement Learning algorithm with a constructive neural network deep reinforcement learning mechanism for continuous sensorimotor knowledge acquisition, thereby enhancing the overall learning capacity. The primary emphasis of this modification centers on optimizing memory utilization and reducing training time. Our study presents a learning strategy that amalgamates deep reinforcement learning with procedural learning, mirroring the incremental learning process observed in human sensorimotor development. This approach is embedded within the CONAIM cognitive-attentional architecture, leveraging the cognitive tools of CST. The proposed learning mechanism allows the model to dynamically create and modify elements in its procedural memory, facilitating the reuse of previously acquired functions and procedures. Additionally, it equips the model with the capability to combine learned elements to effectively adapt to complex scenarios. A constructive neural network was employed, initiating with an initial hidden layer comprising one neuron. However, it possesses the capacity to adapt its internal architecture in response to its performance in procedural and sensorimotor learning tasks, inserting new hidden layers or neurons. Experimentation conducted through simulations involving a humanoid robot demonstrates the successful resolution of tasks that were previously unsolved through incremental knowledge acquisition. Throughout the training phase, the constructive agent achieved a minimum of 40% greater rewards and executed 8% more actions when compared to other agents. In the subsequent testing phase, the constructive agent exhibited a 15% increase in the number of actions performed in contrast to its counterparts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Intelligent & Robotic Systems
Journal of Intelligent & Robotic Systems 工程技术-机器人学
CiteScore
7.00
自引率
9.10%
发文量
219
审稿时长
6 months
期刊介绍: The Journal of Intelligent and Robotic Systems bridges the gap between theory and practice in all areas of intelligent systems and robotics. It publishes original, peer reviewed contributions from initial concept and theory to prototyping to final product development and commercialization. On the theoretical side, the journal features papers focusing on intelligent systems engineering, distributed intelligence systems, multi-level systems, intelligent control, multi-robot systems, cooperation and coordination of unmanned vehicle systems, etc. On the application side, the journal emphasizes autonomous systems, industrial robotic systems, multi-robot systems, aerial vehicles, mobile robot platforms, underwater robots, sensors, sensor-fusion, and sensor-based control. Readers will also find papers on real applications of intelligent and robotic systems (e.g., mechatronics, manufacturing, biomedical, underwater, humanoid, mobile/legged robot and space applications, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信