Mohammadreza Bidgoli, Ali Mohammadian, Behruz Tayfeh-Rezaie, Maksim Zhukovskii
{"title":"弱饱和稳定性阈值","authors":"Mohammadreza Bidgoli, Ali Mohammadian, Behruz Tayfeh-Rezaie, Maksim Zhukovskii","doi":"10.1002/jgt.23079","DOIUrl":null,"url":null,"abstract":"<p>We study the weak <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>s</mi>\n </msub>\n </mrow>\n <annotation> ${K}_{s}$</annotation>\n </semantics></math>-saturation number of the Erdős–Rényi random graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>p</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\mathbb{G}}(n,p)$</annotation>\n </semantics></math>, denoted by <span></span><math>\n <semantics>\n <mrow>\n <mtext>wsat</mtext>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>G</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>p</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>,</mo>\n \n <msub>\n <mi>K</mi>\n \n <mi>s</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{wsat}({\\mathbb{G}}(n,p),{K}_{s})$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>s</mi>\n </msub>\n </mrow>\n <annotation> ${K}_{s}$</annotation>\n </semantics></math> is the complete graph on <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n </mrow>\n <annotation> $s$</annotation>\n </semantics></math> vertices. In 2017, Korándi and Sudakov proved that the weak <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>s</mi>\n </msub>\n </mrow>\n <annotation> ${K}_{s}$</annotation>\n </semantics></math>-saturation number of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>n</mi>\n </msub>\n </mrow>\n <annotation> ${K}_{n}$</annotation>\n </semantics></math> is stable, in the sense that it remains the same after removing edges with constant probability. In this paper, we prove that there exists a threshold for this stability property and give upper and lower bounds on the threshold. This generalizes the result of Korándi and Sudakov. A general upper bound on <span></span><math>\n <semantics>\n <mrow>\n <mtext>wsat</mtext>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>G</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>p</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>,</mo>\n \n <msub>\n <mi>K</mi>\n \n <mi>s</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{wsat}({\\mathbb{G}}(n,p),{K}_{s})$</annotation>\n </semantics></math> is also provided.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Threshold for stability of weak saturation\",\"authors\":\"Mohammadreza Bidgoli, Ali Mohammadian, Behruz Tayfeh-Rezaie, Maksim Zhukovskii\",\"doi\":\"10.1002/jgt.23079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the weak <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>s</mi>\\n </msub>\\n </mrow>\\n <annotation> ${K}_{s}$</annotation>\\n </semantics></math>-saturation number of the Erdős–Rényi random graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>p</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\mathbb{G}}(n,p)$</annotation>\\n </semantics></math>, denoted by <span></span><math>\\n <semantics>\\n <mrow>\\n <mtext>wsat</mtext>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>G</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>p</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>K</mi>\\n \\n <mi>s</mi>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\text{wsat}({\\\\mathbb{G}}(n,p),{K}_{s})$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>s</mi>\\n </msub>\\n </mrow>\\n <annotation> ${K}_{s}$</annotation>\\n </semantics></math> is the complete graph on <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>s</mi>\\n </mrow>\\n <annotation> $s$</annotation>\\n </semantics></math> vertices. In 2017, Korándi and Sudakov proved that the weak <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>s</mi>\\n </msub>\\n </mrow>\\n <annotation> ${K}_{s}$</annotation>\\n </semantics></math>-saturation number of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>n</mi>\\n </msub>\\n </mrow>\\n <annotation> ${K}_{n}$</annotation>\\n </semantics></math> is stable, in the sense that it remains the same after removing edges with constant probability. In this paper, we prove that there exists a threshold for this stability property and give upper and lower bounds on the threshold. This generalizes the result of Korándi and Sudakov. A general upper bound on <span></span><math>\\n <semantics>\\n <mrow>\\n <mtext>wsat</mtext>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>G</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>p</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>K</mi>\\n \\n <mi>s</mi>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\text{wsat}({\\\\mathbb{G}}(n,p),{K}_{s})$</annotation>\\n </semantics></math> is also provided.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We study the weak -saturation number of the Erdős–Rényi random graph , denoted by , where is the complete graph on vertices. In 2017, Korándi and Sudakov proved that the weak -saturation number of is stable, in the sense that it remains the same after removing edges with constant probability. In this paper, we prove that there exists a threshold for this stability property and give upper and lower bounds on the threshold. This generalizes the result of Korándi and Sudakov. A general upper bound on is also provided.