弱饱和稳定性阈值

IF 0.9 3区 数学 Q2 MATHEMATICS
Mohammadreza Bidgoli, Ali Mohammadian, Behruz Tayfeh-Rezaie, Maksim Zhukovskii
{"title":"弱饱和稳定性阈值","authors":"Mohammadreza Bidgoli,&nbsp;Ali Mohammadian,&nbsp;Behruz Tayfeh-Rezaie,&nbsp;Maksim Zhukovskii","doi":"10.1002/jgt.23079","DOIUrl":null,"url":null,"abstract":"<p>We study the weak <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>s</mi>\n </msub>\n </mrow>\n <annotation> ${K}_{s}$</annotation>\n </semantics></math>-saturation number of the Erdős–Rényi random graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>p</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${\\mathbb{G}}(n,p)$</annotation>\n </semantics></math>, denoted by <span></span><math>\n <semantics>\n <mrow>\n <mtext>wsat</mtext>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>G</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>p</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>,</mo>\n \n <msub>\n <mi>K</mi>\n \n <mi>s</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{wsat}({\\mathbb{G}}(n,p),{K}_{s})$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>s</mi>\n </msub>\n </mrow>\n <annotation> ${K}_{s}$</annotation>\n </semantics></math> is the complete graph on <span></span><math>\n <semantics>\n <mrow>\n <mi>s</mi>\n </mrow>\n <annotation> $s$</annotation>\n </semantics></math> vertices. In 2017, Korándi and Sudakov proved that the weak <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>s</mi>\n </msub>\n </mrow>\n <annotation> ${K}_{s}$</annotation>\n </semantics></math>-saturation number of <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>K</mi>\n \n <mi>n</mi>\n </msub>\n </mrow>\n <annotation> ${K}_{n}$</annotation>\n </semantics></math> is stable, in the sense that it remains the same after removing edges with constant probability. In this paper, we prove that there exists a threshold for this stability property and give upper and lower bounds on the threshold. This generalizes the result of Korándi and Sudakov. A general upper bound on <span></span><math>\n <semantics>\n <mrow>\n <mtext>wsat</mtext>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>G</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n \n <mo>,</mo>\n \n <mi>p</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n \n <mo>,</mo>\n \n <msub>\n <mi>K</mi>\n \n <mi>s</mi>\n </msub>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $\\text{wsat}({\\mathbb{G}}(n,p),{K}_{s})$</annotation>\n </semantics></math> is also provided.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"106 3","pages":"474-495"},"PeriodicalIF":0.9000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Threshold for stability of weak saturation\",\"authors\":\"Mohammadreza Bidgoli,&nbsp;Ali Mohammadian,&nbsp;Behruz Tayfeh-Rezaie,&nbsp;Maksim Zhukovskii\",\"doi\":\"10.1002/jgt.23079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the weak <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>s</mi>\\n </msub>\\n </mrow>\\n <annotation> ${K}_{s}$</annotation>\\n </semantics></math>-saturation number of the Erdős–Rényi random graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>p</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${\\\\mathbb{G}}(n,p)$</annotation>\\n </semantics></math>, denoted by <span></span><math>\\n <semantics>\\n <mrow>\\n <mtext>wsat</mtext>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>G</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>p</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>K</mi>\\n \\n <mi>s</mi>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\text{wsat}({\\\\mathbb{G}}(n,p),{K}_{s})$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>s</mi>\\n </msub>\\n </mrow>\\n <annotation> ${K}_{s}$</annotation>\\n </semantics></math> is the complete graph on <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>s</mi>\\n </mrow>\\n <annotation> $s$</annotation>\\n </semantics></math> vertices. In 2017, Korándi and Sudakov proved that the weak <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>s</mi>\\n </msub>\\n </mrow>\\n <annotation> ${K}_{s}$</annotation>\\n </semantics></math>-saturation number of <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mi>n</mi>\\n </msub>\\n </mrow>\\n <annotation> ${K}_{n}$</annotation>\\n </semantics></math> is stable, in the sense that it remains the same after removing edges with constant probability. In this paper, we prove that there exists a threshold for this stability property and give upper and lower bounds on the threshold. This generalizes the result of Korándi and Sudakov. A general upper bound on <span></span><math>\\n <semantics>\\n <mrow>\\n <mtext>wsat</mtext>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>G</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n \\n <mo>,</mo>\\n \\n <mi>p</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>,</mo>\\n \\n <msub>\\n <mi>K</mi>\\n \\n <mi>s</mi>\\n </msub>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\text{wsat}({\\\\mathbb{G}}(n,p),{K}_{s})$</annotation>\\n </semantics></math> is also provided.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"106 3\",\"pages\":\"474-495\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23079\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23079","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究厄尔多斯-雷尼随机图的弱饱和数,用 ,表示,其中是顶点上的完整图。2017 年,Korándi 和 Sudakov 证明了的弱饱和数是稳定的,即在以恒定概率移除边后,它保持不变。在本文中,我们证明了这一稳定性存在一个阈值,并给出了阈值的上界和下界。这推广了 Korándi 和 Sudakov 的结果。本文还给出了一般的上界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Threshold for stability of weak saturation

We study the weak K s ${K}_{s}$ -saturation number of the Erdős–Rényi random graph G ( n , p ) ${\mathbb{G}}(n,p)$ , denoted by wsat ( G ( n , p ) , K s ) $\text{wsat}({\mathbb{G}}(n,p),{K}_{s})$ , where K s ${K}_{s}$ is the complete graph on s $s$ vertices. In 2017, Korándi and Sudakov proved that the weak K s ${K}_{s}$ -saturation number of K n ${K}_{n}$ is stable, in the sense that it remains the same after removing edges with constant probability. In this paper, we prove that there exists a threshold for this stability property and give upper and lower bounds on the threshold. This generalizes the result of Korándi and Sudakov. A general upper bound on wsat ( G ( n , p ) , K s ) $\text{wsat}({\mathbb{G}}(n,p),{K}_{s})$ is also provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信