双曲图上的自避走和多边形

Pub Date : 2024-02-19 DOI:10.1002/jgt.23087
Christoforos Panagiotis
{"title":"双曲图上的自避走和多边形","authors":"Christoforos Panagiotis","doi":"10.1002/jgt.23087","DOIUrl":null,"url":null,"abstract":"<p>We prove that for the <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n </mrow>\n <annotation> $d$</annotation>\n </semantics></math>-regular tessellations of the hyperbolic plane by <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-gons, there are exponentially more self-avoiding walks of length <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> than there are self-avoiding polygons of length <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>. We then prove that this property implies that the self-avoiding walk is ballistic, even on an arbitrary vertex-transitive graph. Moreover, for every fixed <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>, we show that the connective constant for self-avoiding walks satisfies the asymptotic expansion <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n \n <mo>−</mo>\n \n <mi>O</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mn>1</mn>\n \n <mo>∕</mo>\n \n <mi>d</mi>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $d-1-O(1\\unicode{x02215}d)$</annotation>\n </semantics></math> as <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n \n <mo>→</mo>\n \n <mi>∞</mi>\n </mrow>\n <annotation> $d\\to \\infty $</annotation>\n </semantics></math>; on the other hand, the connective constant for self-avoiding polygons remains bounded. Finally, we show for all but two tessellations that the number of self-avoiding walks of length <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math> is comparable to the <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>th power of their connective constant. Some of these results were previously obtained by Madras and Wu for all but finitely many regular tessellations of the hyperbolic plane.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23087","citationCount":"0","resultStr":"{\"title\":\"Self-avoiding walks and polygons on hyperbolic graphs\",\"authors\":\"Christoforos Panagiotis\",\"doi\":\"10.1002/jgt.23087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that for the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n </mrow>\\n <annotation> $d$</annotation>\\n </semantics></math>-regular tessellations of the hyperbolic plane by <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-gons, there are exponentially more self-avoiding walks of length <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> than there are self-avoiding polygons of length <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>. We then prove that this property implies that the self-avoiding walk is ballistic, even on an arbitrary vertex-transitive graph. Moreover, for every fixed <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>, we show that the connective constant for self-avoiding walks satisfies the asymptotic expansion <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n \\n <mo>−</mo>\\n \\n <mi>O</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>∕</mo>\\n \\n <mi>d</mi>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $d-1-O(1\\\\unicode{x02215}d)$</annotation>\\n </semantics></math> as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n \\n <mo>→</mo>\\n \\n <mi>∞</mi>\\n </mrow>\\n <annotation> $d\\\\to \\\\infty $</annotation>\\n </semantics></math>; on the other hand, the connective constant for self-avoiding polygons remains bounded. Finally, we show for all but two tessellations that the number of self-avoiding walks of length <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math> is comparable to the <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>th power of their connective constant. Some of these results were previously obtained by Madras and Wu for all but finitely many regular tessellations of the hyperbolic plane.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23087\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,对于由 k$k$ 图案构成的双曲面 d$d$ 不规则方格网,长度为 n$n$ 的自避走比长度为 n$n$ 的自避多边形多出指数级。然后,我们证明这一特性意味着自避让行走是弹道的,即使在任意顶点传递图上也是如此。此外,对于每一个固定的 k$k$,我们证明自避让行走的连接常数满足 d→∞$d\to \infty $ 时的渐近展开 d-1-O(1∕d)$d-1-O(1\unicode{x02215}d)$ ;另一方面,自避让多边形的连接常数仍然是有界的。最后,我们证明了除两个棋盘格外,长度为 n$n$ 的自回避步行的数量与它们的连接常数的 n$n$ 次幂相当。其中一些结果是马德拉斯和吴先前针对双曲面中除有限多个规则方格之外的所有方格得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Self-avoiding walks and polygons on hyperbolic graphs

分享
查看原文
Self-avoiding walks and polygons on hyperbolic graphs

We prove that for the d $d$ -regular tessellations of the hyperbolic plane by k $k$ -gons, there are exponentially more self-avoiding walks of length n $n$ than there are self-avoiding polygons of length n $n$ . We then prove that this property implies that the self-avoiding walk is ballistic, even on an arbitrary vertex-transitive graph. Moreover, for every fixed k $k$ , we show that the connective constant for self-avoiding walks satisfies the asymptotic expansion d 1 O ( 1 d ) $d-1-O(1\unicode{x02215}d)$ as d $d\to \infty $ ; on the other hand, the connective constant for self-avoiding polygons remains bounded. Finally, we show for all but two tessellations that the number of self-avoiding walks of length n $n$ is comparable to the n $n$ th power of their connective constant. Some of these results were previously obtained by Madras and Wu for all but finitely many regular tessellations of the hyperbolic plane.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信