{"title":"具有稀疏性和波动性约束的基于统计代理的均值回复投资组合","authors":"Ahmad Mousavi, George Michilidis","doi":"10.1111/itor.13442","DOIUrl":null,"url":null,"abstract":"Mean-reverting portfolios with volatility and sparsity constraints are of prime interest to practitioners in finance since they are both profitable and well-diversified, while also managing risk and minimizing transaction costs. Three main measures that serve as statistical proxies to capture the mean-reversion property are predictability, portmanteau criterion, and crossing statistics. If in addition, reasonable volatility and sparsity for the portfolio are desired, a convex quadratic or quartic objective function, subject to nonconvex quadratic and cardinality constraints needs to be minimized. In this paper, we introduce and investigate a comprehensive modeling framework that incorporates all the previous proxies proposed in the literature and develop an effective <i>unifying</i> algorithm that is enabled to obtain a Karush–Kuhn–Tucker (KKT) point under mild regularity conditions. Specifically, we present a tailored penalty decomposition method that approximately solves a sequence of penalized subproblems by a block coordinate descent algorithm. To the best of our knowledge, our proposed algorithm is the first method for directly solving volatile, sparse, and mean-reverting portfolio problems based on the portmanteau criterion and crossing statistics proxies. Further, we establish that the convergence analysis can be extended to a nonconvex objective function case if the starting penalty parameter is larger than a finite bound and the objective function has a bounded level set. Numerical experiments on the S&P 500 data set demonstrate the efficiency of the proposed algorithm in comparison to a semidefinite relaxation-based approach and suggest that the crossing statistics proxy yields more desirable portfolios.","PeriodicalId":49176,"journal":{"name":"International Transactions in Operational Research","volume":"289 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical proxy based mean-reverting portfolios with sparsity and volatility constraints\",\"authors\":\"Ahmad Mousavi, George Michilidis\",\"doi\":\"10.1111/itor.13442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mean-reverting portfolios with volatility and sparsity constraints are of prime interest to practitioners in finance since they are both profitable and well-diversified, while also managing risk and minimizing transaction costs. Three main measures that serve as statistical proxies to capture the mean-reversion property are predictability, portmanteau criterion, and crossing statistics. If in addition, reasonable volatility and sparsity for the portfolio are desired, a convex quadratic or quartic objective function, subject to nonconvex quadratic and cardinality constraints needs to be minimized. In this paper, we introduce and investigate a comprehensive modeling framework that incorporates all the previous proxies proposed in the literature and develop an effective <i>unifying</i> algorithm that is enabled to obtain a Karush–Kuhn–Tucker (KKT) point under mild regularity conditions. Specifically, we present a tailored penalty decomposition method that approximately solves a sequence of penalized subproblems by a block coordinate descent algorithm. To the best of our knowledge, our proposed algorithm is the first method for directly solving volatile, sparse, and mean-reverting portfolio problems based on the portmanteau criterion and crossing statistics proxies. Further, we establish that the convergence analysis can be extended to a nonconvex objective function case if the starting penalty parameter is larger than a finite bound and the objective function has a bounded level set. Numerical experiments on the S&P 500 data set demonstrate the efficiency of the proposed algorithm in comparison to a semidefinite relaxation-based approach and suggest that the crossing statistics proxy yields more desirable portfolios.\",\"PeriodicalId\":49176,\"journal\":{\"name\":\"International Transactions in Operational Research\",\"volume\":\"289 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Transactions in Operational Research\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1111/itor.13442\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MANAGEMENT\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Transactions in Operational Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1111/itor.13442","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MANAGEMENT","Score":null,"Total":0}
Statistical proxy based mean-reverting portfolios with sparsity and volatility constraints
Mean-reverting portfolios with volatility and sparsity constraints are of prime interest to practitioners in finance since they are both profitable and well-diversified, while also managing risk and minimizing transaction costs. Three main measures that serve as statistical proxies to capture the mean-reversion property are predictability, portmanteau criterion, and crossing statistics. If in addition, reasonable volatility and sparsity for the portfolio are desired, a convex quadratic or quartic objective function, subject to nonconvex quadratic and cardinality constraints needs to be minimized. In this paper, we introduce and investigate a comprehensive modeling framework that incorporates all the previous proxies proposed in the literature and develop an effective unifying algorithm that is enabled to obtain a Karush–Kuhn–Tucker (KKT) point under mild regularity conditions. Specifically, we present a tailored penalty decomposition method that approximately solves a sequence of penalized subproblems by a block coordinate descent algorithm. To the best of our knowledge, our proposed algorithm is the first method for directly solving volatile, sparse, and mean-reverting portfolio problems based on the portmanteau criterion and crossing statistics proxies. Further, we establish that the convergence analysis can be extended to a nonconvex objective function case if the starting penalty parameter is larger than a finite bound and the objective function has a bounded level set. Numerical experiments on the S&P 500 data set demonstrate the efficiency of the proposed algorithm in comparison to a semidefinite relaxation-based approach and suggest that the crossing statistics proxy yields more desirable portfolios.
期刊介绍:
International Transactions in Operational Research (ITOR) aims to advance the understanding and practice of Operational Research (OR) and Management Science internationally. Its scope includes:
International problems, such as those of fisheries management, environmental issues, and global competitiveness
International work done by major OR figures
Studies of worldwide interest from nations with emerging OR communities
National or regional OR work which has the potential for application in other nations
Technical developments of international interest
Specific organizational examples that can be applied in other countries
National and international presentations of transnational interest
Broadly relevant professional issues, such as those of ethics and practice
Applications relevant to global industries, such as operations management, manufacturing, and logistics.