无立方顶点的多面体是棱-汉密尔顿多面体

IF 0.9 3区 数学 Q2 MATHEMATICS
Simon Špacapan
{"title":"无立方顶点的多面体是棱-汉密尔顿多面体","authors":"Simon Špacapan","doi":"10.1002/jgt.23078","DOIUrl":null,"url":null,"abstract":"<p>The prism over a graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is the Cartesian product of <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> with the complete graph on two vertices. A graph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is prism-hamiltonian if the prism over <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is hamiltonian. We prove that every polyhedral graph (i.e., 3-connected planar graph) of minimum degree at least four is prism-hamiltonian.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"106 2","pages":"380-406"},"PeriodicalIF":0.9000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23078","citationCount":"0","resultStr":"{\"title\":\"Polyhedra without cubic vertices are prism-hamiltonian\",\"authors\":\"Simon Špacapan\",\"doi\":\"10.1002/jgt.23078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The prism over a graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is the Cartesian product of <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> with the complete graph on two vertices. A graph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is prism-hamiltonian if the prism over <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is hamiltonian. We prove that every polyhedral graph (i.e., 3-connected planar graph) of minimum degree at least four is prism-hamiltonian.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"106 2\",\"pages\":\"380-406\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23078\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23078\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23078","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

图 G$G$ 上的棱是 G$G$ 与两个顶点上的完整图的笛卡尔积。如果 G$G$ 上的棱是哈密顿的,那么图 G$G$ 就是棱哈密顿的。我们证明了每一个最小阶数至少为四的多面体图(即三连平面图)都是棱-哈密顿图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Polyhedra without cubic vertices are prism-hamiltonian

Polyhedra without cubic vertices are prism-hamiltonian

The prism over a graph G $G$ is the Cartesian product of G $G$ with the complete graph on two vertices. A graph G $G$ is prism-hamiltonian if the prism over G $G$ is hamiltonian. We prove that every polyhedral graph (i.e., 3-connected planar graph) of minimum degree at least four is prism-hamiltonian.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信