{"title":"多一数图的结构","authors":"James Tuite","doi":"10.1002/jgt.23082","DOIUrl":null,"url":null,"abstract":"<p>A digraph <span></span><math>\n <semantics>\n <mrow>\n <mi>G</mi>\n </mrow>\n <annotation> $G$</annotation>\n </semantics></math> is <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-<i>geodetic</i> if for any (not necessarily distinct) vertices <span></span><math>\n <semantics>\n <mrow>\n <mi>u</mi>\n <mo>,</mo>\n <mi>v</mi>\n </mrow>\n <annotation> $u,v$</annotation>\n </semantics></math> there is at most one directed walk from <span></span><math>\n <semantics>\n <mrow>\n <mi>u</mi>\n </mrow>\n <annotation> $u$</annotation>\n </semantics></math> to <span></span><math>\n <semantics>\n <mrow>\n <mi>v</mi>\n </mrow>\n <annotation> $v$</annotation>\n </semantics></math> with length not exceeding <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>. The order of a <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-geodetic digraph with minimum out-degree <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n </mrow>\n <annotation> $d$</annotation>\n </semantics></math> is bounded below by the directed Moore bound <span></span><math>\n <semantics>\n <mrow>\n <mi>M</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>d</mi>\n <mo>,</mo>\n <mi>k</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mn>1</mn>\n <mo>+</mo>\n <mi>d</mi>\n <mo>+</mo>\n <msup>\n <mi>d</mi>\n <mn>2</mn>\n </msup>\n <mo>+</mo>\n <mi>⋯</mi>\n <mo>+</mo>\n <msup>\n <mi>d</mi>\n <mi>k</mi>\n </msup>\n </mrow>\n <annotation> $M(d,k)=1+d+{d}^{2}+\\cdots +{d}^{k}$</annotation>\n </semantics></math>. The Moore bound can be met only in the trivial cases <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation> $d=1$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <annotation> $k=1$</annotation>\n </semantics></math>, so it is of interest to look for <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-geodetic digraphs with out-degree <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n </mrow>\n <annotation> $d$</annotation>\n </semantics></math> and smallest possible order <span></span><math>\n <semantics>\n <mrow>\n <mi>M</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>d</mi>\n <mo>,</mo>\n <mi>k</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <mo>+</mo>\n <mo>ϵ</mo>\n </mrow>\n <annotation> $M(d,k)+{\\epsilon }$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n <mo>ϵ</mo>\n </mrow>\n <annotation> ${\\epsilon }$</annotation>\n </semantics></math> is the <i>excess</i> of the digraph. Miller, Miret and Sillasen recently ruled out the existence of digraphs with excess one for <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mn>3</mn>\n <mo>,</mo>\n <mn>4</mn>\n </mrow>\n <annotation> $k=3,4$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>≥</mo>\n <mn>2</mn>\n </mrow>\n <annotation> $d\\ge 2$</annotation>\n </semantics></math> and for <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation> $k=2$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>≥</mo>\n <mn>8</mn>\n </mrow>\n <annotation> $d\\ge 8$</annotation>\n </semantics></math>. We conjecture that there are no digraphs with excess one for <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>,</mo>\n <mi>k</mi>\n <mo>≥</mo>\n <mn>2</mn>\n </mrow>\n <annotation> $d,k\\ge 2$</annotation>\n </semantics></math> and in this paper we investigate the structure of minimal counterexamples to this conjecture. We severely constrain the possible structures of the outlier function and prove the nonexistence of certain digraphs with degree three and excess one, as well closing the open cases <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation> $k=2$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>=</mo>\n <mn>3</mn>\n <mo>,</mo>\n <mn>4</mn>\n <mo>,</mo>\n <mn>5</mn>\n <mo>,</mo>\n <mn>6</mn>\n <mo>,</mo>\n <mn>7</mn>\n </mrow>\n <annotation> $d=3,4,5,6,7$</annotation>\n </semantics></math> left by the analysis of Miller et al. We further show that there are no involutary digraphs with excess one, that is, the outlier function of any such digraph must contain a cycle of length <span></span><math>\n <semantics>\n <mrow>\n <mo>≥</mo>\n <mn>3</mn>\n </mrow>\n <annotation> $\\ge 3$</annotation>\n </semantics></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"106 3","pages":"411-434"},"PeriodicalIF":0.9000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23082","citationCount":"0","resultStr":"{\"title\":\"The structure of digraphs with excess one\",\"authors\":\"James Tuite\",\"doi\":\"10.1002/jgt.23082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A digraph <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n <annotation> $G$</annotation>\\n </semantics></math> is <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-<i>geodetic</i> if for any (not necessarily distinct) vertices <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>u</mi>\\n <mo>,</mo>\\n <mi>v</mi>\\n </mrow>\\n <annotation> $u,v$</annotation>\\n </semantics></math> there is at most one directed walk from <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>u</mi>\\n </mrow>\\n <annotation> $u$</annotation>\\n </semantics></math> to <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n <annotation> $v$</annotation>\\n </semantics></math> with length not exceeding <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>. The order of a <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-geodetic digraph with minimum out-degree <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n </mrow>\\n <annotation> $d$</annotation>\\n </semantics></math> is bounded below by the directed Moore bound <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>M</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>d</mi>\\n <mo>,</mo>\\n <mi>k</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <mn>1</mn>\\n <mo>+</mo>\\n <mi>d</mi>\\n <mo>+</mo>\\n <msup>\\n <mi>d</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>+</mo>\\n <mi>⋯</mi>\\n <mo>+</mo>\\n <msup>\\n <mi>d</mi>\\n <mi>k</mi>\\n </msup>\\n </mrow>\\n <annotation> $M(d,k)=1+d+{d}^{2}+\\\\cdots +{d}^{k}$</annotation>\\n </semantics></math>. The Moore bound can be met only in the trivial cases <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation> $d=1$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>=</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation> $k=1$</annotation>\\n </semantics></math>, so it is of interest to look for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-geodetic digraphs with out-degree <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n </mrow>\\n <annotation> $d$</annotation>\\n </semantics></math> and smallest possible order <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>M</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>d</mi>\\n <mo>,</mo>\\n <mi>k</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <mo>+</mo>\\n <mo>ϵ</mo>\\n </mrow>\\n <annotation> $M(d,k)+{\\\\epsilon }$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>ϵ</mo>\\n </mrow>\\n <annotation> ${\\\\epsilon }$</annotation>\\n </semantics></math> is the <i>excess</i> of the digraph. Miller, Miret and Sillasen recently ruled out the existence of digraphs with excess one for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>=</mo>\\n <mn>3</mn>\\n <mo>,</mo>\\n <mn>4</mn>\\n </mrow>\\n <annotation> $k=3,4$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>≥</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation> $d\\\\ge 2$</annotation>\\n </semantics></math> and for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>=</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation> $k=2$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>≥</mo>\\n <mn>8</mn>\\n </mrow>\\n <annotation> $d\\\\ge 8$</annotation>\\n </semantics></math>. We conjecture that there are no digraphs with excess one for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>,</mo>\\n <mi>k</mi>\\n <mo>≥</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation> $d,k\\\\ge 2$</annotation>\\n </semantics></math> and in this paper we investigate the structure of minimal counterexamples to this conjecture. We severely constrain the possible structures of the outlier function and prove the nonexistence of certain digraphs with degree three and excess one, as well closing the open cases <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>=</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation> $k=2$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>d</mi>\\n <mo>=</mo>\\n <mn>3</mn>\\n <mo>,</mo>\\n <mn>4</mn>\\n <mo>,</mo>\\n <mn>5</mn>\\n <mo>,</mo>\\n <mn>6</mn>\\n <mo>,</mo>\\n <mn>7</mn>\\n </mrow>\\n <annotation> $d=3,4,5,6,7$</annotation>\\n </semantics></math> left by the analysis of Miller et al. We further show that there are no involutary digraphs with excess one, that is, the outlier function of any such digraph must contain a cycle of length <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>≥</mo>\\n <mn>3</mn>\\n </mrow>\\n <annotation> $\\\\ge 3$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"106 3\",\"pages\":\"411-434\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23082\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23082\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23082","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A digraph is -geodetic if for any (not necessarily distinct) vertices there is at most one directed walk from to with length not exceeding . The order of a -geodetic digraph with minimum out-degree is bounded below by the directed Moore bound . The Moore bound can be met only in the trivial cases and , so it is of interest to look for -geodetic digraphs with out-degree and smallest possible order , where is the excess of the digraph. Miller, Miret and Sillasen recently ruled out the existence of digraphs with excess one for and and for and . We conjecture that there are no digraphs with excess one for and in this paper we investigate the structure of minimal counterexamples to this conjecture. We severely constrain the possible structures of the outlier function and prove the nonexistence of certain digraphs with degree three and excess one, as well closing the open cases and left by the analysis of Miller et al. We further show that there are no involutary digraphs with excess one, that is, the outlier function of any such digraph must contain a cycle of length .
期刊介绍:
The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences.
A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .