Peter Gabriel Almeida Souza, Jaqueline do Carmo Lima Carvalho, Lorrana Zelia Martins de Souza, Evaneide Nascimento Lima, Mariana Guerra de Aguilar, Robson Pereira Lima, Osania Emerenciano Ferreira, Lúcia Pinheiro Santos Pimenta, Alan Rodrigues Teixeira Machado
{"title":"热解温度对利用甘蔗渣生产生物炭和生物甲醇的影响","authors":"Peter Gabriel Almeida Souza, Jaqueline do Carmo Lima Carvalho, Lorrana Zelia Martins de Souza, Evaneide Nascimento Lima, Mariana Guerra de Aguilar, Robson Pereira Lima, Osania Emerenciano Ferreira, Lúcia Pinheiro Santos Pimenta, Alan Rodrigues Teixeira Machado","doi":"10.1007/s12155-024-10733-8","DOIUrl":null,"url":null,"abstract":"<div><p>Biochar is recognized for its potential in mitigating climate change, especially through carbon sequestration and soil improvement. To this end, it is important to use all co-products from pyrolysis in a sustainable and economically viable way. In this study, the conversion of sugarcane bagasse at varying pyrolysis temperatures was investigated using <sup>1</sup>H NMR spectroscopy and Chenomx for liquid fraction analysis. The yield of biochar decreased significantly from 45.3 to 3.5% with a temperature increase of 300 to 1000 °C. The morphological analysis revealed that biochar produced at lower temperatures (300 °C and 400 °C) showed tubular and spongy structures, whereas at higher temperatures (600 °C and 800 °C), the structures morphed into holes and thinned further, ultimately degrading further at 1000 °C. All samples of biochar showed characteristics promising for soil improvement and carbon sequestration (O/C < 0.4). The analysis of liquid fractions revealed that biomethanol reached its highest concentration of 19.28 mM at 800 °C, which coincided with the highest production of acetic and lactic acids. Additionally, the highest concentration of acetone was observed at 600 °C. These findings highlight the importance of optimizing pyrolysis conditions for enhanced yields of biochar and platform compounds, as well as the potential of the NMR and Chenomx in bioenergy research.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 3","pages":"1394 - 1401"},"PeriodicalIF":3.1000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Pyrolysis Temperature on the Production of Biochar and Biomethanol from Sugarcane Bagasse\",\"authors\":\"Peter Gabriel Almeida Souza, Jaqueline do Carmo Lima Carvalho, Lorrana Zelia Martins de Souza, Evaneide Nascimento Lima, Mariana Guerra de Aguilar, Robson Pereira Lima, Osania Emerenciano Ferreira, Lúcia Pinheiro Santos Pimenta, Alan Rodrigues Teixeira Machado\",\"doi\":\"10.1007/s12155-024-10733-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Biochar is recognized for its potential in mitigating climate change, especially through carbon sequestration and soil improvement. To this end, it is important to use all co-products from pyrolysis in a sustainable and economically viable way. In this study, the conversion of sugarcane bagasse at varying pyrolysis temperatures was investigated using <sup>1</sup>H NMR spectroscopy and Chenomx for liquid fraction analysis. The yield of biochar decreased significantly from 45.3 to 3.5% with a temperature increase of 300 to 1000 °C. The morphological analysis revealed that biochar produced at lower temperatures (300 °C and 400 °C) showed tubular and spongy structures, whereas at higher temperatures (600 °C and 800 °C), the structures morphed into holes and thinned further, ultimately degrading further at 1000 °C. All samples of biochar showed characteristics promising for soil improvement and carbon sequestration (O/C < 0.4). The analysis of liquid fractions revealed that biomethanol reached its highest concentration of 19.28 mM at 800 °C, which coincided with the highest production of acetic and lactic acids. Additionally, the highest concentration of acetone was observed at 600 °C. These findings highlight the importance of optimizing pyrolysis conditions for enhanced yields of biochar and platform compounds, as well as the potential of the NMR and Chenomx in bioenergy research.</p></div>\",\"PeriodicalId\":487,\"journal\":{\"name\":\"BioEnergy Research\",\"volume\":\"17 3\",\"pages\":\"1394 - 1401\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioEnergy Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12155-024-10733-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioEnergy Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12155-024-10733-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Effect of Pyrolysis Temperature on the Production of Biochar and Biomethanol from Sugarcane Bagasse
Biochar is recognized for its potential in mitigating climate change, especially through carbon sequestration and soil improvement. To this end, it is important to use all co-products from pyrolysis in a sustainable and economically viable way. In this study, the conversion of sugarcane bagasse at varying pyrolysis temperatures was investigated using 1H NMR spectroscopy and Chenomx for liquid fraction analysis. The yield of biochar decreased significantly from 45.3 to 3.5% with a temperature increase of 300 to 1000 °C. The morphological analysis revealed that biochar produced at lower temperatures (300 °C and 400 °C) showed tubular and spongy structures, whereas at higher temperatures (600 °C and 800 °C), the structures morphed into holes and thinned further, ultimately degrading further at 1000 °C. All samples of biochar showed characteristics promising for soil improvement and carbon sequestration (O/C < 0.4). The analysis of liquid fractions revealed that biomethanol reached its highest concentration of 19.28 mM at 800 °C, which coincided with the highest production of acetic and lactic acids. Additionally, the highest concentration of acetone was observed at 600 °C. These findings highlight the importance of optimizing pyrolysis conditions for enhanced yields of biochar and platform compounds, as well as the potential of the NMR and Chenomx in bioenergy research.
期刊介绍:
BioEnergy Research fills a void in the rapidly growing area of feedstock biology research related to biomass, biofuels, and bioenergy. The journal publishes a wide range of articles, including peer-reviewed scientific research, reviews, perspectives and commentary, industry news, and government policy updates. Its coverage brings together a uniquely broad combination of disciplines with a common focus on feedstock biology and science, related to biomass, biofeedstock, and bioenergy production.