Wenhao Feng , Chunli Liu , Guangxun Zhang , Hui Yang , Yichun Su , Yangyang Sun , Huan Pang
{"title":"调节单原子催化剂的局部配位环境以提高电催化活性","authors":"Wenhao Feng , Chunli Liu , Guangxun Zhang , Hui Yang , Yichun Su , Yangyang Sun , Huan Pang","doi":"10.1016/j.enchem.2024.100119","DOIUrl":null,"url":null,"abstract":"<div><p>The local coordination environment (LCE) plays a pivotal role in determining catalyst performance. By controlling the LCE of catalysts, the catalytic activity, selectivity, and stability of catalysts can be effectively increased. This influence is particularly pronounced in the realm of electrocatalysis, especially for single-atom catalysts (SACs). However, it is still a challenge to properly regulate the LCE and improve the activity and stability of SACs during catalysis. According to the differences in electron distribution and interaction between atoms in different types of chemical bonds, the LCE can be adjusted by experimental and simulated design. In this review, we discuss the characterization of LCE in SACs, explore the impact of adjusting LCE in high-performance electrocatalysts and summarize the challenges and opportunities of SACs in the future. We aim for this review to provide new insights into further research on SACs.</p></div>","PeriodicalId":307,"journal":{"name":"EnergyChem","volume":"6 2","pages":"Article 100119"},"PeriodicalIF":22.2000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tuning the local coordination environment of single-atom catalysts for enhanced electrocatalytic activity\",\"authors\":\"Wenhao Feng , Chunli Liu , Guangxun Zhang , Hui Yang , Yichun Su , Yangyang Sun , Huan Pang\",\"doi\":\"10.1016/j.enchem.2024.100119\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The local coordination environment (LCE) plays a pivotal role in determining catalyst performance. By controlling the LCE of catalysts, the catalytic activity, selectivity, and stability of catalysts can be effectively increased. This influence is particularly pronounced in the realm of electrocatalysis, especially for single-atom catalysts (SACs). However, it is still a challenge to properly regulate the LCE and improve the activity and stability of SACs during catalysis. According to the differences in electron distribution and interaction between atoms in different types of chemical bonds, the LCE can be adjusted by experimental and simulated design. In this review, we discuss the characterization of LCE in SACs, explore the impact of adjusting LCE in high-performance electrocatalysts and summarize the challenges and opportunities of SACs in the future. We aim for this review to provide new insights into further research on SACs.</p></div>\",\"PeriodicalId\":307,\"journal\":{\"name\":\"EnergyChem\",\"volume\":\"6 2\",\"pages\":\"Article 100119\"},\"PeriodicalIF\":22.2000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EnergyChem\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2589778024000034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EnergyChem","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589778024000034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Tuning the local coordination environment of single-atom catalysts for enhanced electrocatalytic activity
The local coordination environment (LCE) plays a pivotal role in determining catalyst performance. By controlling the LCE of catalysts, the catalytic activity, selectivity, and stability of catalysts can be effectively increased. This influence is particularly pronounced in the realm of electrocatalysis, especially for single-atom catalysts (SACs). However, it is still a challenge to properly regulate the LCE and improve the activity and stability of SACs during catalysis. According to the differences in electron distribution and interaction between atoms in different types of chemical bonds, the LCE can be adjusted by experimental and simulated design. In this review, we discuss the characterization of LCE in SACs, explore the impact of adjusting LCE in high-performance electrocatalysts and summarize the challenges and opportunities of SACs in the future. We aim for this review to provide new insights into further research on SACs.
期刊介绍:
EnergyChem, a reputable journal, focuses on publishing high-quality research and review articles within the realm of chemistry, chemical engineering, and materials science with a specific emphasis on energy applications. The priority areas covered by the journal include:Solar energy,Energy harvesting devices,Fuel cells,Hydrogen energy,Bioenergy and biofuels,Batteries,Supercapacitors,Electrocatalysis and photocatalysis,Energy storage and energy conversion,Carbon capture and storage