Joshua J. Tully*, Daniel Houghton, Ben G. Breeze, Timothy P. Mollart and Julie V. Macpherson*,
{"title":"BDD 高级氧化电极阳极腐蚀定量测量技术","authors":"Joshua J. Tully*, Daniel Houghton, Ben G. Breeze, Timothy P. Mollart and Julie V. Macpherson*, ","doi":"10.1021/acsmeasuresciau.3c00069","DOIUrl":null,"url":null,"abstract":"<p >Electrochemical advanced oxidation (EAO) systems are of significant interest due to their ability to treat a wide range of organic contaminants in water. Boron doped diamond (BDD) electrodes have found considerable use in EAO. Despite their popularity, no laboratory scale method exists to quantify anodic corrosion of BDD electrodes under EAO conditions; all are qualitative using techniques such as scanning electron microscopy, electrochemistry, and spectroscopy. In this work, we present a new method which can be used to quantify average corrosion rates as a function of solution composition, current density, and BDD material properties over relatively short time periods. The method uses white light interferometry (WLI), in conjunction with BDD electrodes integrated into a 3D-printed flow cell, to measure three-dimensional changes in the surface structure due to corrosion over a 72 h period. It is equally applicable to both thin film and thicker, freestanding BDD. A further advantage of WLI is that it lends itself to large area measurements; data are collected herein for 1 cm diameter disk electrodes. Using WLI, corrosion rates as low as 1 nm h<sup>–1</sup> can be measured. This enables unequivocal demonstration that organics in the EAO solution are not a prerequisite for BDD anodic corrosion. However, they do increase the corrosion rates. In particular, we quantify that addition of 1 M acetic acid to 0.5 M potassium sulfate results in the average corrosion rate increasing ∼60 times. In the same solution, microcrystalline thin film BDD is also found to corrode ∼twice as fast compared to freestanding polished BDD, attributed to the presence of increased sp<sup>2</sup> carbon content. This methodology also represents an important step forward in the prediction of BDD electrode lifetimes for a wide range of EAO applications.</p>","PeriodicalId":29800,"journal":{"name":"ACS Measurement Science Au","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00069","citationCount":"0","resultStr":"{\"title\":\"Quantitative Measurement Technique for Anodic Corrosion of BDD Advanced Oxidation Electrodes\",\"authors\":\"Joshua J. Tully*, Daniel Houghton, Ben G. Breeze, Timothy P. Mollart and Julie V. Macpherson*, \",\"doi\":\"10.1021/acsmeasuresciau.3c00069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Electrochemical advanced oxidation (EAO) systems are of significant interest due to their ability to treat a wide range of organic contaminants in water. Boron doped diamond (BDD) electrodes have found considerable use in EAO. Despite their popularity, no laboratory scale method exists to quantify anodic corrosion of BDD electrodes under EAO conditions; all are qualitative using techniques such as scanning electron microscopy, electrochemistry, and spectroscopy. In this work, we present a new method which can be used to quantify average corrosion rates as a function of solution composition, current density, and BDD material properties over relatively short time periods. The method uses white light interferometry (WLI), in conjunction with BDD electrodes integrated into a 3D-printed flow cell, to measure three-dimensional changes in the surface structure due to corrosion over a 72 h period. It is equally applicable to both thin film and thicker, freestanding BDD. A further advantage of WLI is that it lends itself to large area measurements; data are collected herein for 1 cm diameter disk electrodes. Using WLI, corrosion rates as low as 1 nm h<sup>–1</sup> can be measured. This enables unequivocal demonstration that organics in the EAO solution are not a prerequisite for BDD anodic corrosion. However, they do increase the corrosion rates. In particular, we quantify that addition of 1 M acetic acid to 0.5 M potassium sulfate results in the average corrosion rate increasing ∼60 times. In the same solution, microcrystalline thin film BDD is also found to corrode ∼twice as fast compared to freestanding polished BDD, attributed to the presence of increased sp<sup>2</sup> carbon content. This methodology also represents an important step forward in the prediction of BDD electrode lifetimes for a wide range of EAO applications.</p>\",\"PeriodicalId\":29800,\"journal\":{\"name\":\"ACS Measurement Science Au\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsmeasuresciau.3c00069\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Measurement Science Au\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.3c00069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Measurement Science Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmeasuresciau.3c00069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
Quantitative Measurement Technique for Anodic Corrosion of BDD Advanced Oxidation Electrodes
Electrochemical advanced oxidation (EAO) systems are of significant interest due to their ability to treat a wide range of organic contaminants in water. Boron doped diamond (BDD) electrodes have found considerable use in EAO. Despite their popularity, no laboratory scale method exists to quantify anodic corrosion of BDD electrodes under EAO conditions; all are qualitative using techniques such as scanning electron microscopy, electrochemistry, and spectroscopy. In this work, we present a new method which can be used to quantify average corrosion rates as a function of solution composition, current density, and BDD material properties over relatively short time periods. The method uses white light interferometry (WLI), in conjunction with BDD electrodes integrated into a 3D-printed flow cell, to measure three-dimensional changes in the surface structure due to corrosion over a 72 h period. It is equally applicable to both thin film and thicker, freestanding BDD. A further advantage of WLI is that it lends itself to large area measurements; data are collected herein for 1 cm diameter disk electrodes. Using WLI, corrosion rates as low as 1 nm h–1 can be measured. This enables unequivocal demonstration that organics in the EAO solution are not a prerequisite for BDD anodic corrosion. However, they do increase the corrosion rates. In particular, we quantify that addition of 1 M acetic acid to 0.5 M potassium sulfate results in the average corrosion rate increasing ∼60 times. In the same solution, microcrystalline thin film BDD is also found to corrode ∼twice as fast compared to freestanding polished BDD, attributed to the presence of increased sp2 carbon content. This methodology also represents an important step forward in the prediction of BDD electrode lifetimes for a wide range of EAO applications.
期刊介绍:
ACS Measurement Science Au is an open access journal that publishes experimental computational or theoretical research in all areas of chemical measurement science. Short letters comprehensive articles reviews and perspectives are welcome on topics that report on any phase of analytical operations including sampling measurement and data analysis. This includes:Chemical Reactions and SelectivityChemometrics and Data ProcessingElectrochemistryElemental and Molecular CharacterizationImagingInstrumentationMass SpectrometryMicroscale and Nanoscale systemsOmics (Genomics Proteomics Metabonomics Metabolomics and Bioinformatics)Sensors and Sensing (Biosensors Chemical Sensors Gas Sensors Intracellular Sensors Single-Molecule Sensors Cell Chips Arrays Microfluidic Devices)SeparationsSpectroscopySurface analysisPapers dealing with established methods need to offer a significantly improved original application of the method.