{"title":"RISC-V 内核上的 MiniFloats:使用混合精度短点积的 ISA 扩展","authors":"Luca Bertaccini;Gianna Paulin;Matheus Cavalcante;Tim Fischer;Stefan Mach;Luca Benini","doi":"10.1109/TETC.2024.3365354","DOIUrl":null,"url":null,"abstract":"Low-precision floating-point (FP) formats have recently been intensely investigated in the context of machine learning inference and training applications. While 16-bit formats are already widely used, 8-bit FP data types have lately emerged as a viable option for neural network training when employed in a mixed-precision scenario and combined with rounding methods increasing the precision in compound additions, such as stochastic rounding. So far, hardware implementations supporting FP8 are mostly implemented within domain-specific accelerators. We propose two RISC-V instruction set architecture (ISA) extensions, enhancing respectively scalar and vector general-purpose cores with low and mixed-precision capabilities. The extensions support two 8-bit and two 16-bit FP formats and are based on dot-product instructions accumulating at higher precision. We develop a hardware unit supporting mixed-precision dot products and stochastic rounding and integrate it into an open-source floating-point unit (FPU). Finally, we integrate the enhanced FPU into a cluster of scalar cores, as well as a cluster of vector cores, and implement them in a 12 nm FinFET technology. The former achieves 575 GFLOPS/W on FP8-to-FP16 matrix multiplications at 0.8 V, 1.26 GHz; the latter reaches 860 GFLOPS/W at 0.8 V, 1.08 GHz, 1.93x higher efficiency than computing on FP16-to-FP32.","PeriodicalId":13156,"journal":{"name":"IEEE Transactions on Emerging Topics in Computing","volume":"12 4","pages":"1040-1055"},"PeriodicalIF":5.1000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MiniFloats on RISC-V Cores: ISA Extensions With Mixed-Precision Short Dot Products\",\"authors\":\"Luca Bertaccini;Gianna Paulin;Matheus Cavalcante;Tim Fischer;Stefan Mach;Luca Benini\",\"doi\":\"10.1109/TETC.2024.3365354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low-precision floating-point (FP) formats have recently been intensely investigated in the context of machine learning inference and training applications. While 16-bit formats are already widely used, 8-bit FP data types have lately emerged as a viable option for neural network training when employed in a mixed-precision scenario and combined with rounding methods increasing the precision in compound additions, such as stochastic rounding. So far, hardware implementations supporting FP8 are mostly implemented within domain-specific accelerators. We propose two RISC-V instruction set architecture (ISA) extensions, enhancing respectively scalar and vector general-purpose cores with low and mixed-precision capabilities. The extensions support two 8-bit and two 16-bit FP formats and are based on dot-product instructions accumulating at higher precision. We develop a hardware unit supporting mixed-precision dot products and stochastic rounding and integrate it into an open-source floating-point unit (FPU). Finally, we integrate the enhanced FPU into a cluster of scalar cores, as well as a cluster of vector cores, and implement them in a 12 nm FinFET technology. The former achieves 575 GFLOPS/W on FP8-to-FP16 matrix multiplications at 0.8 V, 1.26 GHz; the latter reaches 860 GFLOPS/W at 0.8 V, 1.08 GHz, 1.93x higher efficiency than computing on FP16-to-FP32.\",\"PeriodicalId\":13156,\"journal\":{\"name\":\"IEEE Transactions on Emerging Topics in Computing\",\"volume\":\"12 4\",\"pages\":\"1040-1055\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Emerging Topics in Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10440050/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10440050/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
MiniFloats on RISC-V Cores: ISA Extensions With Mixed-Precision Short Dot Products
Low-precision floating-point (FP) formats have recently been intensely investigated in the context of machine learning inference and training applications. While 16-bit formats are already widely used, 8-bit FP data types have lately emerged as a viable option for neural network training when employed in a mixed-precision scenario and combined with rounding methods increasing the precision in compound additions, such as stochastic rounding. So far, hardware implementations supporting FP8 are mostly implemented within domain-specific accelerators. We propose two RISC-V instruction set architecture (ISA) extensions, enhancing respectively scalar and vector general-purpose cores with low and mixed-precision capabilities. The extensions support two 8-bit and two 16-bit FP formats and are based on dot-product instructions accumulating at higher precision. We develop a hardware unit supporting mixed-precision dot products and stochastic rounding and integrate it into an open-source floating-point unit (FPU). Finally, we integrate the enhanced FPU into a cluster of scalar cores, as well as a cluster of vector cores, and implement them in a 12 nm FinFET technology. The former achieves 575 GFLOPS/W on FP8-to-FP16 matrix multiplications at 0.8 V, 1.26 GHz; the latter reaches 860 GFLOPS/W at 0.8 V, 1.08 GHz, 1.93x higher efficiency than computing on FP16-to-FP32.
期刊介绍:
IEEE Transactions on Emerging Topics in Computing publishes papers on emerging aspects of computer science, computing technology, and computing applications not currently covered by other IEEE Computer Society Transactions. Some examples of emerging topics in computing include: IT for Green, Synthetic and organic computing structures and systems, Advanced analytics, Social/occupational computing, Location-based/client computer systems, Morphic computer design, Electronic game systems, & Health-care IT.