Muhammad Adib Abdul Rashid, Ahmad Muhsin Ithnin, Wira Jazair Yahya, Nur Atiqah Ramlan, Nurul Aiyshah Mazlan, Hasannuddin Abd Kadir, Dhani Avianto Sugeng, Kinoshita Eiji
{"title":"在城市道路条件下使用轻型卡车的非表面活性剂水包柴油乳化燃料的性能和排放情况","authors":"Muhammad Adib Abdul Rashid, Ahmad Muhsin Ithnin, Wira Jazair Yahya, Nur Atiqah Ramlan, Nurul Aiyshah Mazlan, Hasannuddin Abd Kadir, Dhani Avianto Sugeng, Kinoshita Eiji","doi":"10.1007/s12239-024-00041-7","DOIUrl":null,"url":null,"abstract":"<p>In road transport, varying fuel flow rates make it hard to maintain a consistent water ratio in non-surfactant emulsion fuels using the Real-Time Non-Surfactant Emulsion Fuel Supply System (RTES). Thus, it becomes more reasonable to establish an appropriate range of water content tailored to a road condition. Therefore, this study aims to evaluate fuel consumption and exhaust emissions of non-surfactant emulsion fuel in light-duty trucks equipped with RTES, focusing specifically on urban conditions. On-road testing and 300-s idling tests were used as the urban conditions to compare diesel with non-surfactant Water-in-Diesel Emulsion (WiDE) fuel with water percentages from low to high concentrations of water, namely WiDE low%, WiDE med%, and WiDE high%. During idling tests, all emulsion variants reduce fuel consumption. WiDE high% exhibits the most substantial NOx reduction of 9.2%. On-road testing reveals comparable WiDE and diesel fuel consumption, despite the RTES increased electrical load. WiDE high% shows an increment for NOx and CO emissions by 11.71% and 202.19%. In conclusion, a 7.4% to 21.1% water content range was suggested for non-surfactant emulsion fuel in urban road conditions.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance and Emission of Non-surfactant Water-in-Diesel Emulsion Fuel Using Light-Duty Trucks on Urban Road Conditions\",\"authors\":\"Muhammad Adib Abdul Rashid, Ahmad Muhsin Ithnin, Wira Jazair Yahya, Nur Atiqah Ramlan, Nurul Aiyshah Mazlan, Hasannuddin Abd Kadir, Dhani Avianto Sugeng, Kinoshita Eiji\",\"doi\":\"10.1007/s12239-024-00041-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In road transport, varying fuel flow rates make it hard to maintain a consistent water ratio in non-surfactant emulsion fuels using the Real-Time Non-Surfactant Emulsion Fuel Supply System (RTES). Thus, it becomes more reasonable to establish an appropriate range of water content tailored to a road condition. Therefore, this study aims to evaluate fuel consumption and exhaust emissions of non-surfactant emulsion fuel in light-duty trucks equipped with RTES, focusing specifically on urban conditions. On-road testing and 300-s idling tests were used as the urban conditions to compare diesel with non-surfactant Water-in-Diesel Emulsion (WiDE) fuel with water percentages from low to high concentrations of water, namely WiDE low%, WiDE med%, and WiDE high%. During idling tests, all emulsion variants reduce fuel consumption. WiDE high% exhibits the most substantial NOx reduction of 9.2%. On-road testing reveals comparable WiDE and diesel fuel consumption, despite the RTES increased electrical load. WiDE high% shows an increment for NOx and CO emissions by 11.71% and 202.19%. In conclusion, a 7.4% to 21.1% water content range was suggested for non-surfactant emulsion fuel in urban road conditions.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12239-024-00041-7\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12239-024-00041-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Performance and Emission of Non-surfactant Water-in-Diesel Emulsion Fuel Using Light-Duty Trucks on Urban Road Conditions
In road transport, varying fuel flow rates make it hard to maintain a consistent water ratio in non-surfactant emulsion fuels using the Real-Time Non-Surfactant Emulsion Fuel Supply System (RTES). Thus, it becomes more reasonable to establish an appropriate range of water content tailored to a road condition. Therefore, this study aims to evaluate fuel consumption and exhaust emissions of non-surfactant emulsion fuel in light-duty trucks equipped with RTES, focusing specifically on urban conditions. On-road testing and 300-s idling tests were used as the urban conditions to compare diesel with non-surfactant Water-in-Diesel Emulsion (WiDE) fuel with water percentages from low to high concentrations of water, namely WiDE low%, WiDE med%, and WiDE high%. During idling tests, all emulsion variants reduce fuel consumption. WiDE high% exhibits the most substantial NOx reduction of 9.2%. On-road testing reveals comparable WiDE and diesel fuel consumption, despite the RTES increased electrical load. WiDE high% shows an increment for NOx and CO emissions by 11.71% and 202.19%. In conclusion, a 7.4% to 21.1% water content range was suggested for non-surfactant emulsion fuel in urban road conditions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.