Alzayat Saleh, Marcus Sheaves, Dean Jerry, Mostafa Rahimi Azghadi
{"title":"如何在没有人工标注的情况下跟踪和分割鱼类:一种自我监督的深度学习方法","authors":"Alzayat Saleh, Marcus Sheaves, Dean Jerry, Mostafa Rahimi Azghadi","doi":"10.1007/s10044-024-01227-6","DOIUrl":null,"url":null,"abstract":"<p>Tracking fish movements and sizes of fish is crucial to understanding their ecology and behaviour. Knowing where fish migrate, how they interact with their environment, and how their size affects their behaviour can help ecologists develop more effective conservation and management strategies to protect fish populations and their habitats. Deep learning is a promising tool to analyse fish ecology from underwater videos. However, training deep neural networks (DNNs) for fish tracking and segmentation requires high-quality labels, which are expensive to obtain. We propose an alternative unsupervised approach that relies on spatial and temporal variations in video data to generate noisy pseudo-ground-truth labels. We train a multi-task DNN using these pseudo-labels. Our framework consists of three stages: (1) an optical flow model generates the pseudo-labels using spatial and temporal consistency between frames, (2) a self-supervised model refines the pseudo-labels incrementally, and (3) a segmentation network uses the refined labels for training. Consequently, we perform extensive experiments to validate our method on three public underwater video datasets and demonstrate its effectiveness for video annotation and segmentation. We also evaluate its robustness to different imaging conditions and discuss its limitations.</p>","PeriodicalId":54639,"journal":{"name":"Pattern Analysis and Applications","volume":"7 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How to track and segment fish without human annotations: a self-supervised deep learning approach\",\"authors\":\"Alzayat Saleh, Marcus Sheaves, Dean Jerry, Mostafa Rahimi Azghadi\",\"doi\":\"10.1007/s10044-024-01227-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tracking fish movements and sizes of fish is crucial to understanding their ecology and behaviour. Knowing where fish migrate, how they interact with their environment, and how their size affects their behaviour can help ecologists develop more effective conservation and management strategies to protect fish populations and their habitats. Deep learning is a promising tool to analyse fish ecology from underwater videos. However, training deep neural networks (DNNs) for fish tracking and segmentation requires high-quality labels, which are expensive to obtain. We propose an alternative unsupervised approach that relies on spatial and temporal variations in video data to generate noisy pseudo-ground-truth labels. We train a multi-task DNN using these pseudo-labels. Our framework consists of three stages: (1) an optical flow model generates the pseudo-labels using spatial and temporal consistency between frames, (2) a self-supervised model refines the pseudo-labels incrementally, and (3) a segmentation network uses the refined labels for training. Consequently, we perform extensive experiments to validate our method on three public underwater video datasets and demonstrate its effectiveness for video annotation and segmentation. We also evaluate its robustness to different imaging conditions and discuss its limitations.</p>\",\"PeriodicalId\":54639,\"journal\":{\"name\":\"Pattern Analysis and Applications\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Analysis and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10044-024-01227-6\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Analysis and Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10044-024-01227-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
How to track and segment fish without human annotations: a self-supervised deep learning approach
Tracking fish movements and sizes of fish is crucial to understanding their ecology and behaviour. Knowing where fish migrate, how they interact with their environment, and how their size affects their behaviour can help ecologists develop more effective conservation and management strategies to protect fish populations and their habitats. Deep learning is a promising tool to analyse fish ecology from underwater videos. However, training deep neural networks (DNNs) for fish tracking and segmentation requires high-quality labels, which are expensive to obtain. We propose an alternative unsupervised approach that relies on spatial and temporal variations in video data to generate noisy pseudo-ground-truth labels. We train a multi-task DNN using these pseudo-labels. Our framework consists of three stages: (1) an optical flow model generates the pseudo-labels using spatial and temporal consistency between frames, (2) a self-supervised model refines the pseudo-labels incrementally, and (3) a segmentation network uses the refined labels for training. Consequently, we perform extensive experiments to validate our method on three public underwater video datasets and demonstrate its effectiveness for video annotation and segmentation. We also evaluate its robustness to different imaging conditions and discuss its limitations.
期刊介绍:
The journal publishes high quality articles in areas of fundamental research in intelligent pattern analysis and applications in computer science and engineering. It aims to provide a forum for original research which describes novel pattern analysis techniques and industrial applications of the current technology. In addition, the journal will also publish articles on pattern analysis applications in medical imaging. The journal solicits articles that detail new technology and methods for pattern recognition and analysis in applied domains including, but not limited to, computer vision and image processing, speech analysis, robotics, multimedia, document analysis, character recognition, knowledge engineering for pattern recognition, fractal analysis, and intelligent control. The journal publishes articles on the use of advanced pattern recognition and analysis methods including statistical techniques, neural networks, genetic algorithms, fuzzy pattern recognition, machine learning, and hardware implementations which are either relevant to the development of pattern analysis as a research area or detail novel pattern analysis applications. Papers proposing new classifier systems or their development, pattern analysis systems for real-time applications, fuzzy and temporal pattern recognition and uncertainty management in applied pattern recognition are particularly solicited.