中等振幅的非线性同心水波

IF 2.1 3区 物理与天体物理 Q2 ACOUSTICS
Nerijus Sidorovas , Dmitri Tseluiko , Wooyoung Choi , Karima Khusnutdinova
{"title":"中等振幅的非线性同心水波","authors":"Nerijus Sidorovas ,&nbsp;Dmitri Tseluiko ,&nbsp;Wooyoung Choi ,&nbsp;Karima Khusnutdinova","doi":"10.1016/j.wavemoti.2024.103295","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the outward-propagating nonlinear concentric water waves within the scope of the 2D Boussinesq system. The problem is axisymmetric, and we derive the slow radius versions of the cylindrical Korteweg - de Vries (cKdV) and extended cKdV (ecKdV) models. Numerical runs are initially performed using the full axisymmetric Boussinesq system. At some distance away from the origin, we use the numerical solution of the Boussinesq system as the “initial condition” for the derived cKdV and ecKdV models. We then compare the evolution of the waves as described by both reduced models and the direct numerical simulations of the axisymmetric Boussinesq system. The main conclusion of the paper is that the extended cKdV model provides a much more accurate description of the waves and extends the range of validity of the weakly-nonlinear modelling to the waves of moderate amplitude.</p></div>","PeriodicalId":49367,"journal":{"name":"Wave Motion","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0165212524000258/pdfft?md5=9cf78a83f7e97c50d63bfd717bc74c92&pid=1-s2.0-S0165212524000258-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Nonlinear concentric water waves of moderate amplitude\",\"authors\":\"Nerijus Sidorovas ,&nbsp;Dmitri Tseluiko ,&nbsp;Wooyoung Choi ,&nbsp;Karima Khusnutdinova\",\"doi\":\"10.1016/j.wavemoti.2024.103295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider the outward-propagating nonlinear concentric water waves within the scope of the 2D Boussinesq system. The problem is axisymmetric, and we derive the slow radius versions of the cylindrical Korteweg - de Vries (cKdV) and extended cKdV (ecKdV) models. Numerical runs are initially performed using the full axisymmetric Boussinesq system. At some distance away from the origin, we use the numerical solution of the Boussinesq system as the “initial condition” for the derived cKdV and ecKdV models. We then compare the evolution of the waves as described by both reduced models and the direct numerical simulations of the axisymmetric Boussinesq system. The main conclusion of the paper is that the extended cKdV model provides a much more accurate description of the waves and extends the range of validity of the weakly-nonlinear modelling to the waves of moderate amplitude.</p></div>\",\"PeriodicalId\":49367,\"journal\":{\"name\":\"Wave Motion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0165212524000258/pdfft?md5=9cf78a83f7e97c50d63bfd717bc74c92&pid=1-s2.0-S0165212524000258-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Wave Motion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165212524000258\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wave Motion","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165212524000258","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

摘要

我们在二维布森斯克系统的范围内考虑了向外传播的非线性同心水波。问题是轴对称的,我们推导了圆柱 Korteweg - de Vries(cKdV)和扩展 cKdV(ecKdV)模型的慢半径版本。最初使用全轴对称布西尼斯克系统进行数值运算。在离原点一定距离处,我们使用布西尼斯克系统的数值解作为衍生的 cKdV 和 ecKdV 模型的 "初始条件"。然后,我们比较了这两种简化模型和轴对称布西尼斯克系统直接数值模拟所描述的波的演变过程。本文的主要结论是,扩展的 cKdV 模型对波浪的描述更为精确,并将弱非线性建模的有效范围扩大到中等振幅的波浪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear concentric water waves of moderate amplitude

We consider the outward-propagating nonlinear concentric water waves within the scope of the 2D Boussinesq system. The problem is axisymmetric, and we derive the slow radius versions of the cylindrical Korteweg - de Vries (cKdV) and extended cKdV (ecKdV) models. Numerical runs are initially performed using the full axisymmetric Boussinesq system. At some distance away from the origin, we use the numerical solution of the Boussinesq system as the “initial condition” for the derived cKdV and ecKdV models. We then compare the evolution of the waves as described by both reduced models and the direct numerical simulations of the axisymmetric Boussinesq system. The main conclusion of the paper is that the extended cKdV model provides a much more accurate description of the waves and extends the range of validity of the weakly-nonlinear modelling to the waves of moderate amplitude.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Wave Motion
Wave Motion 物理-力学
CiteScore
4.10
自引率
8.30%
发文量
118
审稿时长
3 months
期刊介绍: Wave Motion is devoted to the cross fertilization of ideas, and to stimulating interaction between workers in various research areas in which wave propagation phenomena play a dominant role. The description and analysis of wave propagation phenomena provides a unifying thread connecting diverse areas of engineering and the physical sciences such as acoustics, optics, geophysics, seismology, electromagnetic theory, solid and fluid mechanics. The journal publishes papers on analytical, numerical and experimental methods. Papers that address fundamentally new topics in wave phenomena or develop wave propagation methods for solving direct and inverse problems are of interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信