用于时空预测的深度潜因模型

IF 2.3 3区 工程技术 Q1 STATISTICS & PROBABILITY
Wonmo Koo, Eun-Yeol Ma, Heeyoung Kim
{"title":"用于时空预测的深度潜因模型","authors":"Wonmo Koo, Eun-Yeol Ma, Heeyoung Kim","doi":"10.1080/00401706.2024.2322661","DOIUrl":null,"url":null,"abstract":"Latent factor models can perform spatio-temporal forecasting (i.e., predicting future responses at unmeasured as well as measured locations) by modeling temporal dependence using latent factors and...","PeriodicalId":22208,"journal":{"name":"Technometrics","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Latent Factor Model for Spatio-Temporal Forecasting\",\"authors\":\"Wonmo Koo, Eun-Yeol Ma, Heeyoung Kim\",\"doi\":\"10.1080/00401706.2024.2322661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Latent factor models can perform spatio-temporal forecasting (i.e., predicting future responses at unmeasured as well as measured locations) by modeling temporal dependence using latent factors and...\",\"PeriodicalId\":22208,\"journal\":{\"name\":\"Technometrics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technometrics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/00401706.2024.2322661\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technometrics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00401706.2024.2322661","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

潜因模型可以利用潜因和时间依赖性建模,进行时空预测(即预测未测量地点和测量地点的未来反应)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Latent Factor Model for Spatio-Temporal Forecasting
Latent factor models can perform spatio-temporal forecasting (i.e., predicting future responses at unmeasured as well as measured locations) by modeling temporal dependence using latent factors and...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Technometrics
Technometrics 管理科学-统计学与概率论
CiteScore
4.50
自引率
16.00%
发文量
59
审稿时长
>12 weeks
期刊介绍: Technometrics is a Journal of Statistics for the Physical, Chemical, and Engineering Sciences, and is published Quarterly by the  American Society for Quality and the American Statistical Association.Since its inception in 1959, the mission of Technometrics has been to contribute to the development and use of statistical methods in the physical, chemical, and engineering sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信