{"title":"带延迟的随机修正斯威夫特-霍恩伯格方程的随机吸引子稳定性分析","authors":"Qiangheng Zhang, Tomás Caraballo, Shuang Yang","doi":"10.1007/s10884-024-10348-9","DOIUrl":null,"url":null,"abstract":"<p>A new type of random attractors is introduced to study dynamics of a stochastic modified Swift–Hohenberg equation with a general delay. A compact, pullback attracting and dividedly invariant set is called a <i>backward attractor</i>, while the criteria for its existence are established in terms of increasing dissipation and backward asymptotic compactness of a cocycle. If the delay term in the equation is Lipschitz continuous such that the Lipschitz bound and the external force are backward limitable, then we prove the existence of a backward attractor, which further leads to the longtime stability as well as the existence of a pullback attractor, where the pullback attractor and the backward attractor are shown to be random and dividedly random, respectively. Two examples of the delay term are provided to illustrate variable and distributed delays without restricting the upper bound of Lipschitz bounds.</p>","PeriodicalId":15624,"journal":{"name":"Journal of Dynamics and Differential Equations","volume":"138 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability Analysis of Random Attractors for Stochastic Modified Swift–Hohenberg Equations with Delays\",\"authors\":\"Qiangheng Zhang, Tomás Caraballo, Shuang Yang\",\"doi\":\"10.1007/s10884-024-10348-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A new type of random attractors is introduced to study dynamics of a stochastic modified Swift–Hohenberg equation with a general delay. A compact, pullback attracting and dividedly invariant set is called a <i>backward attractor</i>, while the criteria for its existence are established in terms of increasing dissipation and backward asymptotic compactness of a cocycle. If the delay term in the equation is Lipschitz continuous such that the Lipschitz bound and the external force are backward limitable, then we prove the existence of a backward attractor, which further leads to the longtime stability as well as the existence of a pullback attractor, where the pullback attractor and the backward attractor are shown to be random and dividedly random, respectively. Two examples of the delay term are provided to illustrate variable and distributed delays without restricting the upper bound of Lipschitz bounds.</p>\",\"PeriodicalId\":15624,\"journal\":{\"name\":\"Journal of Dynamics and Differential Equations\",\"volume\":\"138 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamics and Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10884-024-10348-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamics and Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10884-024-10348-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Stability Analysis of Random Attractors for Stochastic Modified Swift–Hohenberg Equations with Delays
A new type of random attractors is introduced to study dynamics of a stochastic modified Swift–Hohenberg equation with a general delay. A compact, pullback attracting and dividedly invariant set is called a backward attractor, while the criteria for its existence are established in terms of increasing dissipation and backward asymptotic compactness of a cocycle. If the delay term in the equation is Lipschitz continuous such that the Lipschitz bound and the external force are backward limitable, then we prove the existence of a backward attractor, which further leads to the longtime stability as well as the existence of a pullback attractor, where the pullback attractor and the backward attractor are shown to be random and dividedly random, respectively. Two examples of the delay term are provided to illustrate variable and distributed delays without restricting the upper bound of Lipschitz bounds.
期刊介绍:
Journal of Dynamics and Differential Equations serves as an international forum for the publication of high-quality, peer-reviewed original papers in the field of mathematics, biology, engineering, physics, and other areas of science. The dynamical issues treated in the journal cover all the classical topics, including attractors, bifurcation theory, connection theory, dichotomies, stability theory and transversality, as well as topics in new and emerging areas of the field.