{"title":"带延迟的随机修正斯威夫特-霍恩伯格方程的随机吸引子稳定性分析","authors":"Qiangheng Zhang, Tomás Caraballo, Shuang Yang","doi":"10.1007/s10884-024-10348-9","DOIUrl":null,"url":null,"abstract":"<p>A new type of random attractors is introduced to study dynamics of a stochastic modified Swift–Hohenberg equation with a general delay. A compact, pullback attracting and dividedly invariant set is called a <i>backward attractor</i>, while the criteria for its existence are established in terms of increasing dissipation and backward asymptotic compactness of a cocycle. If the delay term in the equation is Lipschitz continuous such that the Lipschitz bound and the external force are backward limitable, then we prove the existence of a backward attractor, which further leads to the longtime stability as well as the existence of a pullback attractor, where the pullback attractor and the backward attractor are shown to be random and dividedly random, respectively. Two examples of the delay term are provided to illustrate variable and distributed delays without restricting the upper bound of Lipschitz bounds.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability Analysis of Random Attractors for Stochastic Modified Swift–Hohenberg Equations with Delays\",\"authors\":\"Qiangheng Zhang, Tomás Caraballo, Shuang Yang\",\"doi\":\"10.1007/s10884-024-10348-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A new type of random attractors is introduced to study dynamics of a stochastic modified Swift–Hohenberg equation with a general delay. A compact, pullback attracting and dividedly invariant set is called a <i>backward attractor</i>, while the criteria for its existence are established in terms of increasing dissipation and backward asymptotic compactness of a cocycle. If the delay term in the equation is Lipschitz continuous such that the Lipschitz bound and the external force are backward limitable, then we prove the existence of a backward attractor, which further leads to the longtime stability as well as the existence of a pullback attractor, where the pullback attractor and the backward attractor are shown to be random and dividedly random, respectively. Two examples of the delay term are provided to illustrate variable and distributed delays without restricting the upper bound of Lipschitz bounds.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10884-024-10348-9\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10884-024-10348-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Stability Analysis of Random Attractors for Stochastic Modified Swift–Hohenberg Equations with Delays
A new type of random attractors is introduced to study dynamics of a stochastic modified Swift–Hohenberg equation with a general delay. A compact, pullback attracting and dividedly invariant set is called a backward attractor, while the criteria for its existence are established in terms of increasing dissipation and backward asymptotic compactness of a cocycle. If the delay term in the equation is Lipschitz continuous such that the Lipschitz bound and the external force are backward limitable, then we prove the existence of a backward attractor, which further leads to the longtime stability as well as the existence of a pullback attractor, where the pullback attractor and the backward attractor are shown to be random and dividedly random, respectively. Two examples of the delay term are provided to illustrate variable and distributed delays without restricting the upper bound of Lipschitz bounds.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.