随机图独立数的两点浓度

IF 1.2 2区 数学 Q1 MATHEMATICS
Tom Bohman, Jakob Hofstad
{"title":"随机图独立数的两点浓度","authors":"Tom Bohman, Jakob Hofstad","doi":"10.1017/fms.2024.6","DOIUrl":null,"url":null,"abstract":"We show that the independence number of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000069_inline1.png\" /> <jats:tex-math> $ G_{n,p}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is concentrated on two values if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000069_inline2.png\" /> <jats:tex-math> $ n^{-2/3+ \\epsilon } &lt; p \\le 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. This result is roughly best possible as an argument of Sah and Sawhney shows that the independence number is not, in general, concentrated on two values for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000069_inline3.png\" /> <jats:tex-math> $ p = o ( (\\log (n)/n)^{2/3} )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. The extent of concentration of the independence number of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000069_inline4.png\" /> <jats:tex-math> $ G_{n,p}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S2050509424000069_inline5.png\" /> <jats:tex-math> $ \\omega (1/n) &lt; p \\le n^{-2/3}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> remains an interesting open question.","PeriodicalId":56000,"journal":{"name":"Forum of Mathematics Sigma","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Two-Point Concentration of the Independence Number of the Random Graph\",\"authors\":\"Tom Bohman, Jakob Hofstad\",\"doi\":\"10.1017/fms.2024.6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the independence number of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000069_inline1.png\\\" /> <jats:tex-math> $ G_{n,p}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is concentrated on two values if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000069_inline2.png\\\" /> <jats:tex-math> $ n^{-2/3+ \\\\epsilon } &lt; p \\\\le 1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. This result is roughly best possible as an argument of Sah and Sawhney shows that the independence number is not, in general, concentrated on two values for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000069_inline3.png\\\" /> <jats:tex-math> $ p = o ( (\\\\log (n)/n)^{2/3} )$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. The extent of concentration of the independence number of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000069_inline4.png\\\" /> <jats:tex-math> $ G_{n,p}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S2050509424000069_inline5.png\\\" /> <jats:tex-math> $ \\\\omega (1/n) &lt; p \\\\le n^{-2/3}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> remains an interesting open question.\",\"PeriodicalId\":56000,\"journal\":{\"name\":\"Forum of Mathematics Sigma\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forum of Mathematics Sigma\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/fms.2024.6\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Sigma","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/fms.2024.6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,如果 $ n^{-2/3+ \epsilon } < p \le 1$,$ G_{n,p}$ 的独立数会集中在两个值上。Sah 和 Sawhney 的论证表明,在一般情况下,当 $ p = o ( (\log (n)/n)^{2/3} )$ 时,独立数不会集中在两个值上。在 $ \omega (1/n) < p \le n^{-2/3}$ 时,$ G_{n,p}$ 的独立数的集中程度仍然是一个有趣的未决问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Two-Point Concentration of the Independence Number of the Random Graph
We show that the independence number of $ G_{n,p}$ is concentrated on two values if $ n^{-2/3+ \epsilon } < p \le 1$ . This result is roughly best possible as an argument of Sah and Sawhney shows that the independence number is not, in general, concentrated on two values for $ p = o ( (\log (n)/n)^{2/3} )$ . The extent of concentration of the independence number of $ G_{n,p}$ for $ \omega (1/n) < p \le n^{-2/3}$ remains an interesting open question.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Forum of Mathematics Sigma
Forum of Mathematics Sigma Mathematics-Statistics and Probability
CiteScore
1.90
自引率
5.90%
发文量
79
审稿时长
40 weeks
期刊介绍: Forum of Mathematics, Sigma is the open access alternative to the leading specialist mathematics journals. Editorial decisions are made by dedicated clusters of editors concentrated in the following areas: foundations of mathematics, discrete mathematics, algebra, number theory, algebraic and complex geometry, differential geometry and geometric analysis, topology, analysis, probability, differential equations, computational mathematics, applied analysis, mathematical physics, and theoretical computer science. This classification exists to aid the peer review process. Contributions which do not neatly fit within these categories are still welcome. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas will be welcomed. All published papers will be free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信