Daniel A. Coulthard Jr, Yoshiyuki Iizuka, Georg F. Zellmer, Raimundo Brahm
{"title":"从统计角度看通过聚焦束电子探针显微分析法推断出的多相地层成分的岩石学用途","authors":"Daniel A. Coulthard Jr, Yoshiyuki Iizuka, Georg F. Zellmer, Raimundo Brahm","doi":"10.1111/ggr.12546","DOIUrl":null,"url":null,"abstract":"<p>Polyphase groundmasses (micro-scale minerals with or without glass) are generated from silicate liquids during the cooling of natural lavas often alongside larger minerals formed long before eruption. Many researchers have posited that compositions gleaned from the analysis of groundmasses closely approximate the compositions of the melts they were derived from, and these have been used frequently to model pre-eruptive magma conditions. However, it is difficult to confidently identify and sample these groundmasses once they are formed. Using a sample of lava that exhibits a wide degree of textural variation (ranging from holocrystalline to hypohyaline) we show that compositions of groundmasses sampled using defocused electron beams are significantly different from glass compositions in terms of mean composition and covariance. Despite this, several groundmass compositions qualify as ‘in equilibrium’ with matrix/rim olivine. When processed using available thermometers, however, modelled equilibrium temperatures are significantly higher than those produced using glass data, on average. Because of this, we prescribe caution in using polyphase groundmass data generated using defocused beam analysis even as a rudimentary approach.</p>","PeriodicalId":12631,"journal":{"name":"Geostandards and Geoanalytical Research","volume":"48 2","pages":"345-358"},"PeriodicalIF":2.7000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical Perspective on the Petrological Utility of Polyphase Groundmass Compositions Inferred via Defocused Beam Electron Probe Microanalysis\",\"authors\":\"Daniel A. Coulthard Jr, Yoshiyuki Iizuka, Georg F. Zellmer, Raimundo Brahm\",\"doi\":\"10.1111/ggr.12546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Polyphase groundmasses (micro-scale minerals with or without glass) are generated from silicate liquids during the cooling of natural lavas often alongside larger minerals formed long before eruption. Many researchers have posited that compositions gleaned from the analysis of groundmasses closely approximate the compositions of the melts they were derived from, and these have been used frequently to model pre-eruptive magma conditions. However, it is difficult to confidently identify and sample these groundmasses once they are formed. Using a sample of lava that exhibits a wide degree of textural variation (ranging from holocrystalline to hypohyaline) we show that compositions of groundmasses sampled using defocused electron beams are significantly different from glass compositions in terms of mean composition and covariance. Despite this, several groundmass compositions qualify as ‘in equilibrium’ with matrix/rim olivine. When processed using available thermometers, however, modelled equilibrium temperatures are significantly higher than those produced using glass data, on average. Because of this, we prescribe caution in using polyphase groundmass data generated using defocused beam analysis even as a rudimentary approach.</p>\",\"PeriodicalId\":12631,\"journal\":{\"name\":\"Geostandards and Geoanalytical Research\",\"volume\":\"48 2\",\"pages\":\"345-358\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geostandards and Geoanalytical Research\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ggr.12546\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geostandards and Geoanalytical Research","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ggr.12546","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Statistical Perspective on the Petrological Utility of Polyphase Groundmass Compositions Inferred via Defocused Beam Electron Probe Microanalysis
Polyphase groundmasses (micro-scale minerals with or without glass) are generated from silicate liquids during the cooling of natural lavas often alongside larger minerals formed long before eruption. Many researchers have posited that compositions gleaned from the analysis of groundmasses closely approximate the compositions of the melts they were derived from, and these have been used frequently to model pre-eruptive magma conditions. However, it is difficult to confidently identify and sample these groundmasses once they are formed. Using a sample of lava that exhibits a wide degree of textural variation (ranging from holocrystalline to hypohyaline) we show that compositions of groundmasses sampled using defocused electron beams are significantly different from glass compositions in terms of mean composition and covariance. Despite this, several groundmass compositions qualify as ‘in equilibrium’ with matrix/rim olivine. When processed using available thermometers, however, modelled equilibrium temperatures are significantly higher than those produced using glass data, on average. Because of this, we prescribe caution in using polyphase groundmass data generated using defocused beam analysis even as a rudimentary approach.
期刊介绍:
Geostandards & Geoanalytical Research is an international journal dedicated to advancing the science of reference materials, analytical techniques and data quality relevant to the chemical analysis of geological and environmental samples. Papers are accepted for publication following peer review.