{"title":"光子上转换辅助铁电光伏技术:对增强 BiFeO3 薄膜太阳能电池光伏响应具有多方面影响的器件配置","authors":"Waseem Ahmad Wani, Gaurav Gupta, Shyama Rath, Harihara Venkataraman, Kannan Ramaswamy","doi":"10.1002/pip.3793","DOIUrl":null,"url":null,"abstract":"<p>This work presents a novel paradigm for upconversion-assisted ferroelectric photovoltaic devices. The system comprises a ferroelectric active layer (BiFeO<sub>3</sub>), an upconverter layer (Yb; Er-doped ZnO), a conductive ITO-coated glass substrate, and a reflective coating (Al) at the rear end of the glass substrate. The photovoltaic efficiency of the single-layer BFO was found to be 0.71%. With the prescribed device model, the total solar efficiency of BiFeO<sub>3</sub> improved significantly and touched solar conversion efficiency of 2.21%. This model's projection widens the future perspectives of device performance in emerging photovoltaic technology, mainly perovskite-based solar cells.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 8","pages":"556-568"},"PeriodicalIF":8.0000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Photon upconversion assisted ferroelectric photovoltaics: Device configuration with multifaceted influence in augmenting the photovoltaic response of BiFeO3 thin-film solar cells\",\"authors\":\"Waseem Ahmad Wani, Gaurav Gupta, Shyama Rath, Harihara Venkataraman, Kannan Ramaswamy\",\"doi\":\"10.1002/pip.3793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work presents a novel paradigm for upconversion-assisted ferroelectric photovoltaic devices. The system comprises a ferroelectric active layer (BiFeO<sub>3</sub>), an upconverter layer (Yb; Er-doped ZnO), a conductive ITO-coated glass substrate, and a reflective coating (Al) at the rear end of the glass substrate. The photovoltaic efficiency of the single-layer BFO was found to be 0.71%. With the prescribed device model, the total solar efficiency of BiFeO<sub>3</sub> improved significantly and touched solar conversion efficiency of 2.21%. This model's projection widens the future perspectives of device performance in emerging photovoltaic technology, mainly perovskite-based solar cells.</p>\",\"PeriodicalId\":223,\"journal\":{\"name\":\"Progress in Photovoltaics\",\"volume\":\"32 8\",\"pages\":\"556-568\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Photovoltaics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pip.3793\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3793","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Photon upconversion assisted ferroelectric photovoltaics: Device configuration with multifaceted influence in augmenting the photovoltaic response of BiFeO3 thin-film solar cells
This work presents a novel paradigm for upconversion-assisted ferroelectric photovoltaic devices. The system comprises a ferroelectric active layer (BiFeO3), an upconverter layer (Yb; Er-doped ZnO), a conductive ITO-coated glass substrate, and a reflective coating (Al) at the rear end of the glass substrate. The photovoltaic efficiency of the single-layer BFO was found to be 0.71%. With the prescribed device model, the total solar efficiency of BiFeO3 improved significantly and touched solar conversion efficiency of 2.21%. This model's projection widens the future perspectives of device performance in emerging photovoltaic technology, mainly perovskite-based solar cells.
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.