Shashi Sourabh, Hadi Afshari, Vincent R. Whiteside, Giles E. Eperon, Rebecca A. Scheidt, Tielyr D. Creason, Madalina Furis, Ahmad R. Kirmani, Bayram Saparov, Joseph M. Luther, Matthew C. Beard, Ian R. Sellers
{"title":"金属卤化物过氧化物太阳能电池中热载流子萃取的证据","authors":"Shashi Sourabh, Hadi Afshari, Vincent R. Whiteside, Giles E. Eperon, Rebecca A. Scheidt, Tielyr D. Creason, Madalina Furis, Ahmad R. Kirmani, Bayram Saparov, Joseph M. Luther, Matthew C. Beard, Ian R. Sellers","doi":"10.1002/pip.3777","DOIUrl":null,"url":null,"abstract":"<p>The presence of hot carriers is presented in the operational properties of an (FA,Cs)Pb(I, Br, Cl)<sub>3</sub> solar cell at ambient temperatures and under practical solar concentration. Albeit, in a device architecture that is not suitably designed as a functional hot carrier solar cell. At 100 K, clear evidence of hot carriers is observed in both the high energy tail of the photoluminescence spectra and from the appearance of a nonequilibrium photocurrent at higher fluence in light <i>J–V</i> measurements. At room temperature, however, the presence of hot carriers in the emission at elevated laser fluence is shown to compete with a gradual red shift in the PL peak energy as photoinduced halide segregation begins to occur at higher lattice temperature. The effects of thermionic emission of hot carriers and the presence of a nonequilibrium carrier distribution are also shown to be distinct from simple lattice heating. This results in large unsaturated photocurrents at high powers as the Fermi distribution exceeds that of the heterointerface controlling carrier transport and rectification.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 8","pages":"546-555"},"PeriodicalIF":8.0000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evidence of hot carrier extraction in metal halide perovskite solar cells\",\"authors\":\"Shashi Sourabh, Hadi Afshari, Vincent R. Whiteside, Giles E. Eperon, Rebecca A. Scheidt, Tielyr D. Creason, Madalina Furis, Ahmad R. Kirmani, Bayram Saparov, Joseph M. Luther, Matthew C. Beard, Ian R. Sellers\",\"doi\":\"10.1002/pip.3777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The presence of hot carriers is presented in the operational properties of an (FA,Cs)Pb(I, Br, Cl)<sub>3</sub> solar cell at ambient temperatures and under practical solar concentration. Albeit, in a device architecture that is not suitably designed as a functional hot carrier solar cell. At 100 K, clear evidence of hot carriers is observed in both the high energy tail of the photoluminescence spectra and from the appearance of a nonequilibrium photocurrent at higher fluence in light <i>J–V</i> measurements. At room temperature, however, the presence of hot carriers in the emission at elevated laser fluence is shown to compete with a gradual red shift in the PL peak energy as photoinduced halide segregation begins to occur at higher lattice temperature. The effects of thermionic emission of hot carriers and the presence of a nonequilibrium carrier distribution are also shown to be distinct from simple lattice heating. This results in large unsaturated photocurrents at high powers as the Fermi distribution exceeds that of the heterointerface controlling carrier transport and rectification.</p>\",\"PeriodicalId\":223,\"journal\":{\"name\":\"Progress in Photovoltaics\",\"volume\":\"32 8\",\"pages\":\"546-555\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Photovoltaics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pip.3777\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3777","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Evidence of hot carrier extraction in metal halide perovskite solar cells
The presence of hot carriers is presented in the operational properties of an (FA,Cs)Pb(I, Br, Cl)3 solar cell at ambient temperatures and under practical solar concentration. Albeit, in a device architecture that is not suitably designed as a functional hot carrier solar cell. At 100 K, clear evidence of hot carriers is observed in both the high energy tail of the photoluminescence spectra and from the appearance of a nonequilibrium photocurrent at higher fluence in light J–V measurements. At room temperature, however, the presence of hot carriers in the emission at elevated laser fluence is shown to compete with a gradual red shift in the PL peak energy as photoinduced halide segregation begins to occur at higher lattice temperature. The effects of thermionic emission of hot carriers and the presence of a nonequilibrium carrier distribution are also shown to be distinct from simple lattice heating. This results in large unsaturated photocurrents at high powers as the Fermi distribution exceeds that of the heterointerface controlling carrier transport and rectification.
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.