{"title":"从废咖啡渣中提取的油的质量参数和脂质成分:有望替代用于食用和化妆品的植物油","authors":"Faouzi Sakouhi, Chaima Saadi, Ikbel Omrani, Sadok Boukhchina, Raquel Rodriguez Solana","doi":"10.1002/ejlt.202300230","DOIUrl":null,"url":null,"abstract":"<p>Coffee grounds are the most commonly generated daily waste in the world, raising numerous questions regarding their proper management and their environmental impact. The present study focuses on the physical and chemical characterization of oil extracted from spent coffee grounds (SCG), with the aim of valorizing this by-product as a potential source for oil production. The results obtained from the analysis of SCG oil were also compared to those of some edible oils (soybean, corn, and sunflower oils) and cosmetic oils (lentisc, sweet almond, and castor oils). The results revealed that spent coffee waste yielded an important amount of oil, specifically 17.19%, as compared to corn (4.31%) and soybean (19.52%) seeds. Regarding the fatty acids composition of SCG oil, eight components were identified, with a high percentage of polyunsaturated fatty acids accounting for more than 45% of total fatty acids. The phytosterols composition of SCG oil revealed the presence of seven components, with β-sitosterol being the predominant one. The tocopherol analysis showed that SCG oil contained only α and β isomers, with β-tocopherol being the dominant form at over 68%. These findings accentuate the potential of spent coffee waste as a promising alternative for oil production and open up new applications for SCG oil, such as in the food industry, pharmaceutical applications, and cosmetics.</p><p><i>Practical Application</i>: Given the significant increase in the demand for vegetable oils, the oil industry has recently begun to explore new plant matrices, particularly those having low costs. SCG are the most commonly generated daily by-product in the world. The present investigation aims to characterize and valorize the oil extracted from SCG. The obtained results revealed the potential of SCG as a promising alternative for oil production. Consequently, valorizing spent coffee waste as a natural by-product for oil production can be an ideal solution to address numerous issues related to its proper management and its environmental impact. Hence, the oil industry can promote spent coffee waste, cheapest by-products, as a promising alternative for oil production. Moreover, the present investigation represents a commendable model of the circular economy since the remaining waste obtained after extracting lipids from the coffee grounds waste can be used as natural fertilizer rich in protein for plant development.</p>","PeriodicalId":11988,"journal":{"name":"European Journal of Lipid Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quality parameters and lipid composition of oil extracted from spent coffee grounds: A promising alternative to vegetable oils used for consumption and cosmetic purposes\",\"authors\":\"Faouzi Sakouhi, Chaima Saadi, Ikbel Omrani, Sadok Boukhchina, Raquel Rodriguez Solana\",\"doi\":\"10.1002/ejlt.202300230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Coffee grounds are the most commonly generated daily waste in the world, raising numerous questions regarding their proper management and their environmental impact. The present study focuses on the physical and chemical characterization of oil extracted from spent coffee grounds (SCG), with the aim of valorizing this by-product as a potential source for oil production. The results obtained from the analysis of SCG oil were also compared to those of some edible oils (soybean, corn, and sunflower oils) and cosmetic oils (lentisc, sweet almond, and castor oils). The results revealed that spent coffee waste yielded an important amount of oil, specifically 17.19%, as compared to corn (4.31%) and soybean (19.52%) seeds. Regarding the fatty acids composition of SCG oil, eight components were identified, with a high percentage of polyunsaturated fatty acids accounting for more than 45% of total fatty acids. The phytosterols composition of SCG oil revealed the presence of seven components, with β-sitosterol being the predominant one. The tocopherol analysis showed that SCG oil contained only α and β isomers, with β-tocopherol being the dominant form at over 68%. These findings accentuate the potential of spent coffee waste as a promising alternative for oil production and open up new applications for SCG oil, such as in the food industry, pharmaceutical applications, and cosmetics.</p><p><i>Practical Application</i>: Given the significant increase in the demand for vegetable oils, the oil industry has recently begun to explore new plant matrices, particularly those having low costs. SCG are the most commonly generated daily by-product in the world. The present investigation aims to characterize and valorize the oil extracted from SCG. The obtained results revealed the potential of SCG as a promising alternative for oil production. Consequently, valorizing spent coffee waste as a natural by-product for oil production can be an ideal solution to address numerous issues related to its proper management and its environmental impact. Hence, the oil industry can promote spent coffee waste, cheapest by-products, as a promising alternative for oil production. Moreover, the present investigation represents a commendable model of the circular economy since the remaining waste obtained after extracting lipids from the coffee grounds waste can be used as natural fertilizer rich in protein for plant development.</p>\",\"PeriodicalId\":11988,\"journal\":{\"name\":\"European Journal of Lipid Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Lipid Science and Technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ejlt.202300230\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Lipid Science and Technology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ejlt.202300230","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Quality parameters and lipid composition of oil extracted from spent coffee grounds: A promising alternative to vegetable oils used for consumption and cosmetic purposes
Coffee grounds are the most commonly generated daily waste in the world, raising numerous questions regarding their proper management and their environmental impact. The present study focuses on the physical and chemical characterization of oil extracted from spent coffee grounds (SCG), with the aim of valorizing this by-product as a potential source for oil production. The results obtained from the analysis of SCG oil were also compared to those of some edible oils (soybean, corn, and sunflower oils) and cosmetic oils (lentisc, sweet almond, and castor oils). The results revealed that spent coffee waste yielded an important amount of oil, specifically 17.19%, as compared to corn (4.31%) and soybean (19.52%) seeds. Regarding the fatty acids composition of SCG oil, eight components were identified, with a high percentage of polyunsaturated fatty acids accounting for more than 45% of total fatty acids. The phytosterols composition of SCG oil revealed the presence of seven components, with β-sitosterol being the predominant one. The tocopherol analysis showed that SCG oil contained only α and β isomers, with β-tocopherol being the dominant form at over 68%. These findings accentuate the potential of spent coffee waste as a promising alternative for oil production and open up new applications for SCG oil, such as in the food industry, pharmaceutical applications, and cosmetics.
Practical Application: Given the significant increase in the demand for vegetable oils, the oil industry has recently begun to explore new plant matrices, particularly those having low costs. SCG are the most commonly generated daily by-product in the world. The present investigation aims to characterize and valorize the oil extracted from SCG. The obtained results revealed the potential of SCG as a promising alternative for oil production. Consequently, valorizing spent coffee waste as a natural by-product for oil production can be an ideal solution to address numerous issues related to its proper management and its environmental impact. Hence, the oil industry can promote spent coffee waste, cheapest by-products, as a promising alternative for oil production. Moreover, the present investigation represents a commendable model of the circular economy since the remaining waste obtained after extracting lipids from the coffee grounds waste can be used as natural fertilizer rich in protein for plant development.
期刊介绍:
The European Journal of Lipid Science and Technology is a peer-reviewed journal publishing original research articles, reviews, and other contributions on lipid related topics in food science and technology, biomedical science including clinical and pre-clinical research, nutrition, animal science, plant and microbial lipids, (bio)chemistry, oleochemistry, biotechnology, processing, physical chemistry, and analytics including lipidomics. A major focus of the journal is the synthesis of health related topics with applied aspects.
Following is a selection of subject areas which are of special interest to EJLST:
Animal and plant products for healthier foods including strategic feeding and transgenic crops
Authentication and analysis of foods for ensuring food quality and safety
Bioavailability of PUFA and other nutrients
Dietary lipids and minor compounds, their specific roles in food products and in nutrition
Food technology and processing for safer and healthier products
Functional foods and nutraceuticals
Lipidomics
Lipid structuring and formulations
Oleochemistry, lipid-derived polymers and biomaterials
Processes using lipid-modifying enzymes
The scope is not restricted to these areas. Submissions on topics at the interface of basic research and applications are strongly encouraged. The journal is the official organ the European Federation for the Science and Technology of Lipids (Euro Fed Lipid).