基于苯并三唑的空穴传输聚合物的氟置换工程,实现高性能铯铋硼过氧化物太阳能电池

Zheng Dai, Chen Duan, Qiang Guo, Zhibin Wang, Naizhong Jiang, Yuanjia Ding, Lei Gao, Erjun Zhou
{"title":"基于苯并三唑的空穴传输聚合物的氟置换工程,实现高性能铯铋硼过氧化物太阳能电池","authors":"Zheng Dai,&nbsp;Chen Duan,&nbsp;Qiang Guo,&nbsp;Zhibin Wang,&nbsp;Naizhong Jiang,&nbsp;Yuanjia Ding,&nbsp;Lei Gao,&nbsp;Erjun Zhou","doi":"10.1002/bte2.20230065","DOIUrl":null,"url":null,"abstract":"<p>Developing suitable hole transport materials is of utmost importance in the quest to enhance the performance of CsPbI<sub>2</sub>Br perovskite solar cells (PSCs). Among the various undoped hole transport materials (HTMs), D-π-A type polymers incorporating benzodithiophene (BDT) as the D unit and benzotriazole (BTA) as the A unit have shown promising potential. To further optimize the energy level and enhance the hole transport ability of these HTMs, we employed a fluorine substitution strategy to synthesize P-BTA-2F and P-BTA-4F based on the polymer P-BTA-0F. Subsequently, we investigated the impact of varying degrees of fluorine substitution on the properties of the polymer materials and the performance of the devices. As the number of F substitutions increases, the polymer energy level of the HTM gradually shifts downward, the face-on stacking of the HTM strengthens, the hole mobility of the HTM increases, and the rate of hole extraction and transport becomes faster. Ultimately, the CsPbI<sub>2</sub>Br PSCs based on the P-BTA-4F HTM achieve the highest power conversion efficiency (PCE) of 17.68%. Those findings demonstrate that selecting an appropriate amount of fluorine substitution is crucial for regulating the performance of polymer HTMs and improving device efficiency.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"3 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20230065","citationCount":"0","resultStr":"{\"title\":\"Fluorine substitutions engineering of benzotriazole-based hole transport polymers toward high-performance CsPbI2Br perovskite solar cells\",\"authors\":\"Zheng Dai,&nbsp;Chen Duan,&nbsp;Qiang Guo,&nbsp;Zhibin Wang,&nbsp;Naizhong Jiang,&nbsp;Yuanjia Ding,&nbsp;Lei Gao,&nbsp;Erjun Zhou\",\"doi\":\"10.1002/bte2.20230065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Developing suitable hole transport materials is of utmost importance in the quest to enhance the performance of CsPbI<sub>2</sub>Br perovskite solar cells (PSCs). Among the various undoped hole transport materials (HTMs), D-π-A type polymers incorporating benzodithiophene (BDT) as the D unit and benzotriazole (BTA) as the A unit have shown promising potential. To further optimize the energy level and enhance the hole transport ability of these HTMs, we employed a fluorine substitution strategy to synthesize P-BTA-2F and P-BTA-4F based on the polymer P-BTA-0F. Subsequently, we investigated the impact of varying degrees of fluorine substitution on the properties of the polymer materials and the performance of the devices. As the number of F substitutions increases, the polymer energy level of the HTM gradually shifts downward, the face-on stacking of the HTM strengthens, the hole mobility of the HTM increases, and the rate of hole extraction and transport becomes faster. Ultimately, the CsPbI<sub>2</sub>Br PSCs based on the P-BTA-4F HTM achieve the highest power conversion efficiency (PCE) of 17.68%. Those findings demonstrate that selecting an appropriate amount of fluorine substitution is crucial for regulating the performance of polymer HTMs and improving device efficiency.</p>\",\"PeriodicalId\":8807,\"journal\":{\"name\":\"Battery Energy\",\"volume\":\"3 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20230065\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Battery Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20230065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20230065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

开发合适的空穴传输材料对于提高铯掺杂硼酸盐包晶太阳能电池(PSC)的性能至关重要。在各种未掺杂的空穴传输材料(HTMs)中,以苯并二噻吩(BDT)为 D 单元、苯并三唑(BTA)为 A 单元的 D-π-A 型聚合物显示出了巨大的潜力。为了进一步优化这些 HTM 的能级并增强其空穴传输能力,我们采用氟替代策略,在聚合物 P-BTA-0F 的基础上合成了 P-BTA-2F 和 P-BTA-4F。随后,我们研究了不同程度的氟替代对聚合物材料特性和器件性能的影响。随着氟取代数量的增加,HTM 的聚合物能级逐渐下移,HTM 的面上堆叠加强,HTM 的空穴迁移率增加,空穴萃取和传输速度变快。最终,基于 P-BTA-4F HTM 的 CsPbI2Br PSCs 实现了 17.68% 的最高功率转换效率 (PCE)。这些发现表明,选择适当的氟替代量对于调节聚合物 HTM 的性能和提高器件效率至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fluorine substitutions engineering of benzotriazole-based hole transport polymers toward high-performance CsPbI2Br perovskite solar cells

Fluorine substitutions engineering of benzotriazole-based hole transport polymers toward high-performance CsPbI2Br perovskite solar cells

Fluorine substitutions engineering of benzotriazole-based hole transport polymers toward high-performance CsPbI2Br perovskite solar cells

Developing suitable hole transport materials is of utmost importance in the quest to enhance the performance of CsPbI2Br perovskite solar cells (PSCs). Among the various undoped hole transport materials (HTMs), D-π-A type polymers incorporating benzodithiophene (BDT) as the D unit and benzotriazole (BTA) as the A unit have shown promising potential. To further optimize the energy level and enhance the hole transport ability of these HTMs, we employed a fluorine substitution strategy to synthesize P-BTA-2F and P-BTA-4F based on the polymer P-BTA-0F. Subsequently, we investigated the impact of varying degrees of fluorine substitution on the properties of the polymer materials and the performance of the devices. As the number of F substitutions increases, the polymer energy level of the HTM gradually shifts downward, the face-on stacking of the HTM strengthens, the hole mobility of the HTM increases, and the rate of hole extraction and transport becomes faster. Ultimately, the CsPbI2Br PSCs based on the P-BTA-4F HTM achieve the highest power conversion efficiency (PCE) of 17.68%. Those findings demonstrate that selecting an appropriate amount of fluorine substitution is crucial for regulating the performance of polymer HTMs and improving device efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信