通过脂肪酶的酯化作用提高芒果苷的脂溶性和脂质抗氧化活性

IF 1.8 3区 农林科学 Q3 FOOD SCIENCE & TECHNOLOGY
Xin Yu, Xinyi Yang, Junqing Qian, Hui Guo
{"title":"通过脂肪酶的酯化作用提高芒果苷的脂溶性和脂质抗氧化活性","authors":"Xin Yu,&nbsp;Xinyi Yang,&nbsp;Junqing Qian,&nbsp;Hui Guo","doi":"10.1002/ejlt.202300216","DOIUrl":null,"url":null,"abstract":"<p>Mangiferin is one of the main bioactive ingredients in leaves of <i>Mangifera indica</i>. But the poor liposolubility and low bioavailability restrict its application. This study aimed to esterify mangiferin with lipase to improve its lipophilicity, and evaluate its antioxidant activity and hypoglycemic properties. Four fatty acids (palmitic acid, lauric acid, stearic acid, oleic acid) were selected for enzymatic esterification with mangiferin by single-factor experiments. Under the following optimum reaction conditions of tetrahydrofuran (THF):<i>tert</i>-amyl alcohol (2:1) was used as solvent, water activity was 0.31, TLIM lipase was 45 mg mL<sup>–1</sup>, The ratio of mangiferin to fatty acid was 1:50, and the substrates were pretreated by ultrasonic for 0.5 h, then reacted at 55°C for 21 h, the resulting conversion rates of mangiferin-esterified derivatives exceeded 70.0%.</p><p>Lipophilicity, antioxidant, and PTP1B inhibitory activity of mangiferin-esterified derivatives were determined. The results demonstrated that compared with mangiferin, the ability to scavenge DPPH radicals decreased by about 9%, but the lipophilicity was increased by 10–30 times, and the lipid antioxidant capacity was also improved significantly. Moreover, the inhibitory activity of protein tyrosine phosphatase 1B (PTP1B) exhibited minimal alteration. This indicates that esterification can not only improve the lipophilicity of mangiferin, but also improve its lipid antioxidant capacity.</p><p><i>Practical Applications</i>: In the study, a series of mangiferin-esterified derivatives were synthesized and their lipophilicity, antioxidant properties, and PTP1B inhibitory activity were determined. The results indicated that, compared with the untreated mangiferin, the mangiferin-esterified derivatives exhibited superior lipid antioxidant and hypoglycemic activities. Furthermore, the enzymatic esterification method employed in this study offered greater economic and environmental advantages when compared to chemical catalysis. Therefore, the preparation of mangiferin derivatives through enzymatic esterification were deemed feasible with potential application value for enhancing lipid antioxidant capacity in high-fat foods.</p>","PeriodicalId":11988,"journal":{"name":"European Journal of Lipid Science and Technology","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving liposolubility and lipid antioxidant activity of mangiferin through esterification by lipase\",\"authors\":\"Xin Yu,&nbsp;Xinyi Yang,&nbsp;Junqing Qian,&nbsp;Hui Guo\",\"doi\":\"10.1002/ejlt.202300216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mangiferin is one of the main bioactive ingredients in leaves of <i>Mangifera indica</i>. But the poor liposolubility and low bioavailability restrict its application. This study aimed to esterify mangiferin with lipase to improve its lipophilicity, and evaluate its antioxidant activity and hypoglycemic properties. Four fatty acids (palmitic acid, lauric acid, stearic acid, oleic acid) were selected for enzymatic esterification with mangiferin by single-factor experiments. Under the following optimum reaction conditions of tetrahydrofuran (THF):<i>tert</i>-amyl alcohol (2:1) was used as solvent, water activity was 0.31, TLIM lipase was 45 mg mL<sup>–1</sup>, The ratio of mangiferin to fatty acid was 1:50, and the substrates were pretreated by ultrasonic for 0.5 h, then reacted at 55°C for 21 h, the resulting conversion rates of mangiferin-esterified derivatives exceeded 70.0%.</p><p>Lipophilicity, antioxidant, and PTP1B inhibitory activity of mangiferin-esterified derivatives were determined. The results demonstrated that compared with mangiferin, the ability to scavenge DPPH radicals decreased by about 9%, but the lipophilicity was increased by 10–30 times, and the lipid antioxidant capacity was also improved significantly. Moreover, the inhibitory activity of protein tyrosine phosphatase 1B (PTP1B) exhibited minimal alteration. This indicates that esterification can not only improve the lipophilicity of mangiferin, but also improve its lipid antioxidant capacity.</p><p><i>Practical Applications</i>: In the study, a series of mangiferin-esterified derivatives were synthesized and their lipophilicity, antioxidant properties, and PTP1B inhibitory activity were determined. The results indicated that, compared with the untreated mangiferin, the mangiferin-esterified derivatives exhibited superior lipid antioxidant and hypoglycemic activities. Furthermore, the enzymatic esterification method employed in this study offered greater economic and environmental advantages when compared to chemical catalysis. Therefore, the preparation of mangiferin derivatives through enzymatic esterification were deemed feasible with potential application value for enhancing lipid antioxidant capacity in high-fat foods.</p>\",\"PeriodicalId\":11988,\"journal\":{\"name\":\"European Journal of Lipid Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Lipid Science and Technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ejlt.202300216\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Lipid Science and Technology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ejlt.202300216","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

芒果苷是芒果叶中的主要生物活性成分之一。但由于脂溶性差、生物利用率低,限制了它的应用。本研究旨在用脂肪酶酯化芒果苷,以提高其亲脂性,并评估其抗氧化活性和降血糖特性。通过单因素实验选择了四种脂肪酸(棕榈酸、月桂酸、硬脂酸、油酸)与芒果苷进行酶法酯化反应。以四氢呋喃(THF):叔戊醇(2:1)为溶剂,水活度为 0.31,TLIM 脂肪酶为 45 mg mL-1,芒果苷与脂肪酸的比例为 1:50的最佳反应条件下,底物经超声波预处理 0.测定了芒果苷酯化衍生物的亲脂性、抗氧化性和 PTP1B 抑制活性。结果表明,与芒果苷相比,芒果苷酯化衍生物清除 DPPH 自由基的能力下降了约 9%,但亲脂性提高了 10-30 倍,脂质抗氧化能力也显著提高。此外,对蛋白酪氨酸磷酸酶 1B(PTP1B)的抑制活性变化极小。这表明酯化不仅能提高芒果苷的亲脂性,还能提高其脂质抗氧化能力:本研究合成了一系列芒果苷酯化衍生物,并测定了它们的亲脂性、抗氧化性和 PTP1B 抑制活性。结果表明,与未经处理的芒果苷相比,芒果苷酯化衍生物具有更高的脂质抗氧化和降血糖活性。此外,与化学催化法相比,本研究采用的酶法酯化方法具有更大的经济和环保优势。因此,通过酶法酯化制备芒果苷衍生物被认为是可行的,具有提高高脂食品中脂质抗氧化能力的潜在应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Improving liposolubility and lipid antioxidant activity of mangiferin through esterification by lipase

Improving liposolubility and lipid antioxidant activity of mangiferin through esterification by lipase

Mangiferin is one of the main bioactive ingredients in leaves of Mangifera indica. But the poor liposolubility and low bioavailability restrict its application. This study aimed to esterify mangiferin with lipase to improve its lipophilicity, and evaluate its antioxidant activity and hypoglycemic properties. Four fatty acids (palmitic acid, lauric acid, stearic acid, oleic acid) were selected for enzymatic esterification with mangiferin by single-factor experiments. Under the following optimum reaction conditions of tetrahydrofuran (THF):tert-amyl alcohol (2:1) was used as solvent, water activity was 0.31, TLIM lipase was 45 mg mL–1, The ratio of mangiferin to fatty acid was 1:50, and the substrates were pretreated by ultrasonic for 0.5 h, then reacted at 55°C for 21 h, the resulting conversion rates of mangiferin-esterified derivatives exceeded 70.0%.

Lipophilicity, antioxidant, and PTP1B inhibitory activity of mangiferin-esterified derivatives were determined. The results demonstrated that compared with mangiferin, the ability to scavenge DPPH radicals decreased by about 9%, but the lipophilicity was increased by 10–30 times, and the lipid antioxidant capacity was also improved significantly. Moreover, the inhibitory activity of protein tyrosine phosphatase 1B (PTP1B) exhibited minimal alteration. This indicates that esterification can not only improve the lipophilicity of mangiferin, but also improve its lipid antioxidant capacity.

Practical Applications: In the study, a series of mangiferin-esterified derivatives were synthesized and their lipophilicity, antioxidant properties, and PTP1B inhibitory activity were determined. The results indicated that, compared with the untreated mangiferin, the mangiferin-esterified derivatives exhibited superior lipid antioxidant and hypoglycemic activities. Furthermore, the enzymatic esterification method employed in this study offered greater economic and environmental advantages when compared to chemical catalysis. Therefore, the preparation of mangiferin derivatives through enzymatic esterification were deemed feasible with potential application value for enhancing lipid antioxidant capacity in high-fat foods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
0.00%
发文量
101
审稿时长
6-16 weeks
期刊介绍: The European Journal of Lipid Science and Technology is a peer-reviewed journal publishing original research articles, reviews, and other contributions on lipid related topics in food science and technology, biomedical science including clinical and pre-clinical research, nutrition, animal science, plant and microbial lipids, (bio)chemistry, oleochemistry, biotechnology, processing, physical chemistry, and analytics including lipidomics. A major focus of the journal is the synthesis of health related topics with applied aspects. Following is a selection of subject areas which are of special interest to EJLST: Animal and plant products for healthier foods including strategic feeding and transgenic crops Authentication and analysis of foods for ensuring food quality and safety Bioavailability of PUFA and other nutrients Dietary lipids and minor compounds, their specific roles in food products and in nutrition Food technology and processing for safer and healthier products Functional foods and nutraceuticals Lipidomics Lipid structuring and formulations Oleochemistry, lipid-derived polymers and biomaterials Processes using lipid-modifying enzymes The scope is not restricted to these areas. Submissions on topics at the interface of basic research and applications are strongly encouraged. The journal is the official organ the European Federation for the Science and Technology of Lipids (Euro Fed Lipid).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信