{"title":"智能植物病害网:自适应密集混合卷积网络与关注机制,通过改进的优化方法实现基于物联网的植物病害检测。","authors":"N Ananthi, V Balaji, M Mohana, S Gnanapriya","doi":"10.1080/0954898X.2024.2316080","DOIUrl":null,"url":null,"abstract":"<p><p>Plant diseases are rising nowadays. Plant diseases lead to high economic losses. Internet of Things (IoT) technology has found its application in various sectors. This led to the introduction of smart farming, in which IoT has been utilized to help identify the exact spot of the diseased affected region on the leaf from the vast farmland in a well-organized and automated manner. Thus, the main focus of this task is the introduction of a novel plant disease detection model that relies on IoT technology. The collected images are given to the Image Transmission phase. Here, the encryption task is performed by employing the Advanced Encryption Standard (AES) and also the decrypted plant images are fed to the pre-processing stage. The Mask Regions with Convolutional Neural Networks (R-CNN) are used to segment the pre-processed images. Then, the segmented images are given to the detection phase in which the Adaptive Dense Hybrid Convolution Network with Attention Mechanism (ADHCN-AM) approach is utilized to perform the detection of plant disease. From the ADHCN-AM, the final detected plant disease outcomes are obtained. Throughout the entire validation, the offered model shows 95% enhancement in terms of MCC showcasing its effectiveness over the existing approaches.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-39"},"PeriodicalIF":1.1000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Smart plant disease net: Adaptive Dense Hybrid Convolution network with attention mechanism for IoT-based plant disease detection by improved optimization approach.\",\"authors\":\"N Ananthi, V Balaji, M Mohana, S Gnanapriya\",\"doi\":\"10.1080/0954898X.2024.2316080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant diseases are rising nowadays. Plant diseases lead to high economic losses. Internet of Things (IoT) technology has found its application in various sectors. This led to the introduction of smart farming, in which IoT has been utilized to help identify the exact spot of the diseased affected region on the leaf from the vast farmland in a well-organized and automated manner. Thus, the main focus of this task is the introduction of a novel plant disease detection model that relies on IoT technology. The collected images are given to the Image Transmission phase. Here, the encryption task is performed by employing the Advanced Encryption Standard (AES) and also the decrypted plant images are fed to the pre-processing stage. The Mask Regions with Convolutional Neural Networks (R-CNN) are used to segment the pre-processed images. Then, the segmented images are given to the detection phase in which the Adaptive Dense Hybrid Convolution Network with Attention Mechanism (ADHCN-AM) approach is utilized to perform the detection of plant disease. From the ADHCN-AM, the final detected plant disease outcomes are obtained. Throughout the entire validation, the offered model shows 95% enhancement in terms of MCC showcasing its effectiveness over the existing approaches.</p>\",\"PeriodicalId\":54735,\"journal\":{\"name\":\"Network-Computation in Neural Systems\",\"volume\":\" \",\"pages\":\"1-39\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Network-Computation in Neural Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1080/0954898X.2024.2316080\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2316080","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Smart plant disease net: Adaptive Dense Hybrid Convolution network with attention mechanism for IoT-based plant disease detection by improved optimization approach.
Plant diseases are rising nowadays. Plant diseases lead to high economic losses. Internet of Things (IoT) technology has found its application in various sectors. This led to the introduction of smart farming, in which IoT has been utilized to help identify the exact spot of the diseased affected region on the leaf from the vast farmland in a well-organized and automated manner. Thus, the main focus of this task is the introduction of a novel plant disease detection model that relies on IoT technology. The collected images are given to the Image Transmission phase. Here, the encryption task is performed by employing the Advanced Encryption Standard (AES) and also the decrypted plant images are fed to the pre-processing stage. The Mask Regions with Convolutional Neural Networks (R-CNN) are used to segment the pre-processed images. Then, the segmented images are given to the detection phase in which the Adaptive Dense Hybrid Convolution Network with Attention Mechanism (ADHCN-AM) approach is utilized to perform the detection of plant disease. From the ADHCN-AM, the final detected plant disease outcomes are obtained. Throughout the entire validation, the offered model shows 95% enhancement in terms of MCC showcasing its effectiveness over the existing approaches.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.