{"title":"通过构建个性化语义记忆模型确定词义的相对性","authors":"Brendan T. Johns","doi":"10.1111/cogs.13413","DOIUrl":null,"url":null,"abstract":"<p>Distributional models of lexical semantics are capable of acquiring sophisticated representations of word meanings. The main theoretical insight provided by these models is that they demonstrate the systematic connection between the knowledge that people acquire and the experience that they have with the natural language environment. However, linguistic experience is inherently variable and differs radically across people due to demographic and cultural variables. Recently, distributional models have been used to examine how word meanings vary across languages and it was found that there is considerable variability in the meanings of words across languages for most semantic categories. The goal of this article is to examine how variable word meanings are across individual language users within a single language. This was accomplished by assembling 500 individual user corpora attained from the online forum Reddit. Each user corpus ranged between 3.8 and 32.3 million words each, and a count-based distributional framework was used to extract word meanings for each user. These representations were then used to estimate the semantic alignment of word meanings across individual language users. It was found that there are significant levels of relativity in word meanings across individuals, and these differences are partially explained by other psycholinguistic factors, such as concreteness, semantic diversity, and social aspects of language usage. These results point to word meanings being fundamentally relative and contextually fluid, with this relativeness being related to the individualized nature of linguistic experience.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determining the Relativity of Word Meanings Through the Construction of Individualized Models of Semantic Memory\",\"authors\":\"Brendan T. Johns\",\"doi\":\"10.1111/cogs.13413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Distributional models of lexical semantics are capable of acquiring sophisticated representations of word meanings. The main theoretical insight provided by these models is that they demonstrate the systematic connection between the knowledge that people acquire and the experience that they have with the natural language environment. However, linguistic experience is inherently variable and differs radically across people due to demographic and cultural variables. Recently, distributional models have been used to examine how word meanings vary across languages and it was found that there is considerable variability in the meanings of words across languages for most semantic categories. The goal of this article is to examine how variable word meanings are across individual language users within a single language. This was accomplished by assembling 500 individual user corpora attained from the online forum Reddit. Each user corpus ranged between 3.8 and 32.3 million words each, and a count-based distributional framework was used to extract word meanings for each user. These representations were then used to estimate the semantic alignment of word meanings across individual language users. It was found that there are significant levels of relativity in word meanings across individuals, and these differences are partially explained by other psycholinguistic factors, such as concreteness, semantic diversity, and social aspects of language usage. These results point to word meanings being fundamentally relative and contextually fluid, with this relativeness being related to the individualized nature of linguistic experience.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cogs.13413\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cogs.13413","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Determining the Relativity of Word Meanings Through the Construction of Individualized Models of Semantic Memory
Distributional models of lexical semantics are capable of acquiring sophisticated representations of word meanings. The main theoretical insight provided by these models is that they demonstrate the systematic connection between the knowledge that people acquire and the experience that they have with the natural language environment. However, linguistic experience is inherently variable and differs radically across people due to demographic and cultural variables. Recently, distributional models have been used to examine how word meanings vary across languages and it was found that there is considerable variability in the meanings of words across languages for most semantic categories. The goal of this article is to examine how variable word meanings are across individual language users within a single language. This was accomplished by assembling 500 individual user corpora attained from the online forum Reddit. Each user corpus ranged between 3.8 and 32.3 million words each, and a count-based distributional framework was used to extract word meanings for each user. These representations were then used to estimate the semantic alignment of word meanings across individual language users. It was found that there are significant levels of relativity in word meanings across individuals, and these differences are partially explained by other psycholinguistic factors, such as concreteness, semantic diversity, and social aspects of language usage. These results point to word meanings being fundamentally relative and contextually fluid, with this relativeness being related to the individualized nature of linguistic experience.