研究抗体大小、电荷以及与 FcRn/抗原的结合亲和力对抗体药代动力学的综合影响的基于生理学的最小药代动力学模型。

IF 2.2 4区 医学 Q3 PHARMACOLOGY & PHARMACY
Krutika Patidar, Nikhil Pillai, Saroj Dhakal, Lindsay B Avery, Panteleimon D Mavroudis
{"title":"研究抗体大小、电荷以及与 FcRn/抗原的结合亲和力对抗体药代动力学的综合影响的基于生理学的最小药代动力学模型。","authors":"Krutika Patidar, Nikhil Pillai, Saroj Dhakal, Lindsay B Avery, Panteleimon D Mavroudis","doi":"10.1007/s10928-023-09899-z","DOIUrl":null,"url":null,"abstract":"<p><p>Protein therapeutics have revolutionized the treatment of a wide range of diseases. While they have distinct physicochemical characteristics that influence their absorption, distribution, metabolism, and excretion (ADME) properties, the relationship between the physicochemical properties and PK is still largely unknown. In this work we present a minimal physiologically-based pharmacokinetic (mPBPK) model that incorporates a multivariate quantitative relation between a therapeutic's physicochemical parameters and its corresponding ADME properties. The model's compound-specific input includes molecular weight, molecular size (Stoke's radius), molecular charge, binding affinity to FcRn, and specific antigen affinity. Through derived and fitted empirical relationships, the model demonstrates the effect of these compound-specific properties on antibody disposition in both plasma and peripheral tissues using observed PK data in mice and humans. The mPBPK model applies the two-pore hypothesis to predict size-based clearance and exposure of full-length antibodies (150 kDa) and antibody fragments (50-100 kDa) within a onefold error. We quantitatively relate antibody charge and PK parameters like uptake rate, non-specific binding affinity, and volume of distribution to capture the relatively faster clearance of positively charged mAb as compared to negatively charged mAb. The model predicts the terminal plasma clearance of slightly positively and negatively charged antibody in humans within a onefold error. The mPBPK model presented in this work can be used to predict the target-mediated disposition of a drug when compound-specific and target-specific properties are known. To our knowledge, a combined effect of antibody weight, size, charge, FcRn, and antigen has not been incorporated and studied in a single mPBPK model previously. By conclusively incorporating and relating a multitude of protein's physicochemical properties to observed PK, our mPBPK model aims to contribute as a platform approach in the early stages of drug development where many of these properties can be optimized to improve a molecule's PK and ultimately its efficacy.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":" ","pages":"477-492"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576895/pdf/","citationCount":"0","resultStr":"{\"title\":\"A minimal physiologically based pharmacokinetic model to study the combined effect of antibody size, charge, and binding affinity to FcRn/antigen on antibody pharmacokinetics.\",\"authors\":\"Krutika Patidar, Nikhil Pillai, Saroj Dhakal, Lindsay B Avery, Panteleimon D Mavroudis\",\"doi\":\"10.1007/s10928-023-09899-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Protein therapeutics have revolutionized the treatment of a wide range of diseases. While they have distinct physicochemical characteristics that influence their absorption, distribution, metabolism, and excretion (ADME) properties, the relationship between the physicochemical properties and PK is still largely unknown. In this work we present a minimal physiologically-based pharmacokinetic (mPBPK) model that incorporates a multivariate quantitative relation between a therapeutic's physicochemical parameters and its corresponding ADME properties. The model's compound-specific input includes molecular weight, molecular size (Stoke's radius), molecular charge, binding affinity to FcRn, and specific antigen affinity. Through derived and fitted empirical relationships, the model demonstrates the effect of these compound-specific properties on antibody disposition in both plasma and peripheral tissues using observed PK data in mice and humans. The mPBPK model applies the two-pore hypothesis to predict size-based clearance and exposure of full-length antibodies (150 kDa) and antibody fragments (50-100 kDa) within a onefold error. We quantitatively relate antibody charge and PK parameters like uptake rate, non-specific binding affinity, and volume of distribution to capture the relatively faster clearance of positively charged mAb as compared to negatively charged mAb. The model predicts the terminal plasma clearance of slightly positively and negatively charged antibody in humans within a onefold error. The mPBPK model presented in this work can be used to predict the target-mediated disposition of a drug when compound-specific and target-specific properties are known. To our knowledge, a combined effect of antibody weight, size, charge, FcRn, and antigen has not been incorporated and studied in a single mPBPK model previously. By conclusively incorporating and relating a multitude of protein's physicochemical properties to observed PK, our mPBPK model aims to contribute as a platform approach in the early stages of drug development where many of these properties can be optimized to improve a molecule's PK and ultimately its efficacy.</p>\",\"PeriodicalId\":16851,\"journal\":{\"name\":\"Journal of Pharmacokinetics and Pharmacodynamics\",\"volume\":\" \",\"pages\":\"477-492\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576895/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmacokinetics and Pharmacodynamics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10928-023-09899-z\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/24 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-023-09899-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

蛋白质疗法彻底改变了多种疾病的治疗方法。虽然它们具有影响其吸收、分布、代谢和排泄(ADME)特性的独特理化特性,但理化特性与 PK 之间的关系在很大程度上仍然未知。在这项研究中,我们提出了一种基于生理学的最小药代动力学(mPBPK)模型,该模型包含了治疗药物的理化参数与其相应的 ADME 特性之间的多元定量关系。该模型的特定化合物输入包括分子量、分子大小(斯托克半径)、分子电荷、与 FcRn 的结合亲和力以及特异性抗原亲和力。通过推导和拟合经验关系,该模型利用在小鼠和人体中观察到的 PK 数据,证明了这些化合物特异性对抗体在血浆和外周组织中处置的影响。mPBPK 模型应用双孔假说预测了全长抗体(150 kDa)和抗体片段(50-100 kDa)基于大小的清除率和暴露率,误差在 1 倍以内。我们将抗体电荷与吸收率、非特异性结合亲和力和分布容积等 PK 参数定量联系起来,以捕捉带正电荷的 mAb 相对于带负电荷的 mAb 更快的清除率。该模型能预测人体中略带正电荷和负电荷抗体的最终血浆清除率,误差在 1 倍以内。在已知化合物特异性和靶点特异性的情况下,本研究提出的 mPBPK 模型可用于预测药物的靶点介导处置。据我们所知,抗体的重量、大小、电荷、FcRn 和抗原的综合效应还没有被纳入到一个 mPBPK 模型中进行研究。我们的 mPBPK 模型将蛋白质的多种理化性质与观察到的 PK 相结合并将其联系起来,旨在为药物开发的早期阶段提供一种平台方法,通过优化这些性质来改善分子的 PK 并最终提高其疗效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A minimal physiologically based pharmacokinetic model to study the combined effect of antibody size, charge, and binding affinity to FcRn/antigen on antibody pharmacokinetics.

A minimal physiologically based pharmacokinetic model to study the combined effect of antibody size, charge, and binding affinity to FcRn/antigen on antibody pharmacokinetics.

Protein therapeutics have revolutionized the treatment of a wide range of diseases. While they have distinct physicochemical characteristics that influence their absorption, distribution, metabolism, and excretion (ADME) properties, the relationship between the physicochemical properties and PK is still largely unknown. In this work we present a minimal physiologically-based pharmacokinetic (mPBPK) model that incorporates a multivariate quantitative relation between a therapeutic's physicochemical parameters and its corresponding ADME properties. The model's compound-specific input includes molecular weight, molecular size (Stoke's radius), molecular charge, binding affinity to FcRn, and specific antigen affinity. Through derived and fitted empirical relationships, the model demonstrates the effect of these compound-specific properties on antibody disposition in both plasma and peripheral tissues using observed PK data in mice and humans. The mPBPK model applies the two-pore hypothesis to predict size-based clearance and exposure of full-length antibodies (150 kDa) and antibody fragments (50-100 kDa) within a onefold error. We quantitatively relate antibody charge and PK parameters like uptake rate, non-specific binding affinity, and volume of distribution to capture the relatively faster clearance of positively charged mAb as compared to negatively charged mAb. The model predicts the terminal plasma clearance of slightly positively and negatively charged antibody in humans within a onefold error. The mPBPK model presented in this work can be used to predict the target-mediated disposition of a drug when compound-specific and target-specific properties are known. To our knowledge, a combined effect of antibody weight, size, charge, FcRn, and antigen has not been incorporated and studied in a single mPBPK model previously. By conclusively incorporating and relating a multitude of protein's physicochemical properties to observed PK, our mPBPK model aims to contribute as a platform approach in the early stages of drug development where many of these properties can be optimized to improve a molecule's PK and ultimately its efficacy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
4.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信