开发瓜尔胶强化磷酸钙镁骨生物水泥。

IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Vidul Goenka, Anupama Devi V. K., Ceera Manikandan, Amit Kumar Jaiswal
{"title":"开发瓜尔胶强化磷酸钙镁骨生物水泥。","authors":"Vidul Goenka,&nbsp;Anupama Devi V. K.,&nbsp;Ceera Manikandan,&nbsp;Amit Kumar Jaiswal","doi":"10.1002/jbm.b.35384","DOIUrl":null,"url":null,"abstract":"<p>This study aims at developing a calcium magnesium phosphate-based bone biocement that combines a natural polymer and regenerative properties of bone bonding materials. The formulation of this biocement consists of oxidized guar gum, polydopamine, and calcium magnesium phosphate. The oxidized guar gum is easily soluble in water and has a slightly basic pH, unlike unmodified guar gum, thus allowing a homogenous paste to form in the alkaline environment of calcium magnesium phosphate. Three different oxidized degrees of guar gum were made, and the impact on the biocement properties was studied. The modified guar gum-reinforced biocement (OGG C2) displayed higher mechanical strength and lower degradation rates than OGG B1 and OGG A0. Furthermore, samples with polydopamine exhibited better results, thus, improving the already reinforced biocement. Morphological studies of the biocement displayed a highly porous structure with porosity varying among biocement containing different oxidized guar gum and polydopamine levels.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of guar gum reinforced calcium magnesium phosphate-based bone biocement\",\"authors\":\"Vidul Goenka,&nbsp;Anupama Devi V. K.,&nbsp;Ceera Manikandan,&nbsp;Amit Kumar Jaiswal\",\"doi\":\"10.1002/jbm.b.35384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study aims at developing a calcium magnesium phosphate-based bone biocement that combines a natural polymer and regenerative properties of bone bonding materials. The formulation of this biocement consists of oxidized guar gum, polydopamine, and calcium magnesium phosphate. The oxidized guar gum is easily soluble in water and has a slightly basic pH, unlike unmodified guar gum, thus allowing a homogenous paste to form in the alkaline environment of calcium magnesium phosphate. Three different oxidized degrees of guar gum were made, and the impact on the biocement properties was studied. The modified guar gum-reinforced biocement (OGG C2) displayed higher mechanical strength and lower degradation rates than OGG B1 and OGG A0. Furthermore, samples with polydopamine exhibited better results, thus, improving the already reinforced biocement. Morphological studies of the biocement displayed a highly porous structure with porosity varying among biocement containing different oxidized guar gum and polydopamine levels.</p>\",\"PeriodicalId\":15269,\"journal\":{\"name\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35384\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35384","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在开发一种基于磷酸钙镁的骨生物水泥,它结合了天然聚合物和骨粘合材料的再生特性。这种生物水泥的配方由氧化瓜尔胶、多巴胺和磷酸钙镁组成。氧化瓜尔胶易溶于水,与未改性瓜尔胶不同,其 pH 值略带碱性,因此能在磷酸钙镁的碱性环境中形成均匀的糊状物。我们制作了三种不同氧化程度的瓜尔胶,并研究了它们对生物水泥性能的影响。与 OGG B1 和 OGG A0 相比,改性瓜尔胶增强生物水泥(OGG C2)显示出更高的机械强度和更低的降解率。此外,含有聚多巴胺的样品显示出更好的效果,从而改善了已增强的生物水泥。生物水泥的形态学研究显示,生物水泥具有高度多孔结构,不同氧化瓜尔胶和多巴胺含量的生物水泥的孔隙率各不相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of guar gum reinforced calcium magnesium phosphate-based bone biocement

This study aims at developing a calcium magnesium phosphate-based bone biocement that combines a natural polymer and regenerative properties of bone bonding materials. The formulation of this biocement consists of oxidized guar gum, polydopamine, and calcium magnesium phosphate. The oxidized guar gum is easily soluble in water and has a slightly basic pH, unlike unmodified guar gum, thus allowing a homogenous paste to form in the alkaline environment of calcium magnesium phosphate. Three different oxidized degrees of guar gum were made, and the impact on the biocement properties was studied. The modified guar gum-reinforced biocement (OGG C2) displayed higher mechanical strength and lower degradation rates than OGG B1 and OGG A0. Furthermore, samples with polydopamine exhibited better results, thus, improving the already reinforced biocement. Morphological studies of the biocement displayed a highly porous structure with porosity varying among biocement containing different oxidized guar gum and polydopamine levels.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
2.90%
发文量
199
审稿时长
12 months
期刊介绍: Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats: • original research reports • short research and development reports • scientific reviews • current concepts articles • special reports • editorials Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信