利用机器学习技术进行非选择性剖腹产风险评估

IF 0.1 Q4 OBSTETRICS & GYNECOLOGY
L. López-Mendizábal , C. Varea , A. Berlanga , M.A. Patricio , J.M. Molina , J.L. Bartha
{"title":"利用机器学习技术进行非选择性剖腹产风险评估","authors":"L. López-Mendizábal ,&nbsp;C. Varea ,&nbsp;A. Berlanga ,&nbsp;M.A. Patricio ,&nbsp;J.M. Molina ,&nbsp;J.L. Bartha","doi":"10.1016/j.gine.2024.100949","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The sustained increase and the disparities in the rate of caesarean deliveries (CS) pose a public health challenge. Optimising the use of CS is of global concern and a challenge for public health. Machine Learning (ML) techniques can assist clinicians in decision-making, improving treatment modalities and patient outcomes.</p></div><div><h3>Methods</h3><p>Original data correspond to the 41,037 deliveries that took place at La Paz University Maternity Hospital (Madrid, Spain) between 2010 and 2018. Machine Learning (ML) model algorithm Random Forest (RF) was performed to determine the risk of CS. The first analysis was Mean Decrease Accuracy carried out on 50 permutations. The second analysis was ceteris-paribus and partial-dependence profiles.</p></div><div><h3>Results</h3><p>The RF models obtained identify a higher risk of CS delivery in multiple gestations, macrosomic foetuses and in those with prolonged gestation associated with other maternal–foetal characteristics. Results deny the consideration that older nulliparous mothers represent a specific obstetrtic risk goup.</p></div><div><h3>Conclusions</h3><p>ML techniques can be very useful in identifying risk factors to be addressed to optimise the number of CS. Macrosomia prevention programmes, reduction in the rate of multiple pregnancies or finishing pregnancy before the onset of risks associated with prolonged pregnancy may be ways to optimise the number of CS.</p></div>","PeriodicalId":41294,"journal":{"name":"Clinica e Investigacion en Ginecologia y Obstetricia","volume":"51 3","pages":"Article 100949"},"PeriodicalIF":0.1000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-elective caesarean section risk assessment using Machine Learning techniques\",\"authors\":\"L. López-Mendizábal ,&nbsp;C. Varea ,&nbsp;A. Berlanga ,&nbsp;M.A. Patricio ,&nbsp;J.M. Molina ,&nbsp;J.L. Bartha\",\"doi\":\"10.1016/j.gine.2024.100949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>The sustained increase and the disparities in the rate of caesarean deliveries (CS) pose a public health challenge. Optimising the use of CS is of global concern and a challenge for public health. Machine Learning (ML) techniques can assist clinicians in decision-making, improving treatment modalities and patient outcomes.</p></div><div><h3>Methods</h3><p>Original data correspond to the 41,037 deliveries that took place at La Paz University Maternity Hospital (Madrid, Spain) between 2010 and 2018. Machine Learning (ML) model algorithm Random Forest (RF) was performed to determine the risk of CS. The first analysis was Mean Decrease Accuracy carried out on 50 permutations. The second analysis was ceteris-paribus and partial-dependence profiles.</p></div><div><h3>Results</h3><p>The RF models obtained identify a higher risk of CS delivery in multiple gestations, macrosomic foetuses and in those with prolonged gestation associated with other maternal–foetal characteristics. Results deny the consideration that older nulliparous mothers represent a specific obstetrtic risk goup.</p></div><div><h3>Conclusions</h3><p>ML techniques can be very useful in identifying risk factors to be addressed to optimise the number of CS. Macrosomia prevention programmes, reduction in the rate of multiple pregnancies or finishing pregnancy before the onset of risks associated with prolonged pregnancy may be ways to optimise the number of CS.</p></div>\",\"PeriodicalId\":41294,\"journal\":{\"name\":\"Clinica e Investigacion en Ginecologia y Obstetricia\",\"volume\":\"51 3\",\"pages\":\"Article 100949\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinica e Investigacion en Ginecologia y Obstetricia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0210573X24000121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OBSTETRICS & GYNECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinica e Investigacion en Ginecologia y Obstetricia","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0210573X24000121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景剖腹产率(CS)的持续增长和差异对公共卫生构成了挑战。优化剖腹产的使用是全球关注的问题,也是公共卫生面临的挑战。机器学习(ML)技术可以帮助临床医生做出决策,改善治疗方式和患者预后。方法原始数据对应的是 2010 年至 2018 年期间在拉巴斯大学产科医院(西班牙马德里)进行的 41,037 例分娩。采用机器学习(ML)模型算法随机森林(RF)确定CS风险。第一项分析是对 50 次排列进行的平均下降准确率分析。结果所获得的 RF 模型发现,多胎妊娠、巨大胎儿以及与其他母胎特征相关的妊娠期延长的胎儿发生 CS 分娩的风险较高。结论ML 技术在确定风险因素以优化 CS 数量方面非常有用。预防巨大儿计划、降低多胎妊娠率或在与妊娠时间过长相关的风险出现之前结束妊娠,可能是优化剖宫产次数的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-elective caesarean section risk assessment using Machine Learning techniques

Background

The sustained increase and the disparities in the rate of caesarean deliveries (CS) pose a public health challenge. Optimising the use of CS is of global concern and a challenge for public health. Machine Learning (ML) techniques can assist clinicians in decision-making, improving treatment modalities and patient outcomes.

Methods

Original data correspond to the 41,037 deliveries that took place at La Paz University Maternity Hospital (Madrid, Spain) between 2010 and 2018. Machine Learning (ML) model algorithm Random Forest (RF) was performed to determine the risk of CS. The first analysis was Mean Decrease Accuracy carried out on 50 permutations. The second analysis was ceteris-paribus and partial-dependence profiles.

Results

The RF models obtained identify a higher risk of CS delivery in multiple gestations, macrosomic foetuses and in those with prolonged gestation associated with other maternal–foetal characteristics. Results deny the consideration that older nulliparous mothers represent a specific obstetrtic risk goup.

Conclusions

ML techniques can be very useful in identifying risk factors to be addressed to optimise the number of CS. Macrosomia prevention programmes, reduction in the rate of multiple pregnancies or finishing pregnancy before the onset of risks associated with prolonged pregnancy may be ways to optimise the number of CS.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.20
自引率
0.00%
发文量
54
期刊介绍: Una excelente publicación para mantenerse al día en los temas de máximo interés de la ginecología de vanguardia. Resulta idónea tanto para el especialista en ginecología, como en obstetricia o en pediatría, y está presente en los más prestigiosos índices de referencia en medicina.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信