Jessy V. van Asperen, Farah Kotaich, Damien Caillol, Pascale Bomont
{"title":"神经丝:新发现与未来挑战","authors":"Jessy V. van Asperen, Farah Kotaich, Damien Caillol, Pascale Bomont","doi":"10.1016/j.ceb.2024.102326","DOIUrl":null,"url":null,"abstract":"<div><p>Neurofilaments (NFs) are abundant cytoskeletal proteins that emerge as a critical hub for cell signalling within neurons. As we start to uncover essential roles of NFs in regulating microtubule and organelle dynamics, nerve conduction and neurotransmission, novel discoveries are expected to arise in genetics, with NFs identified as causal genes for various neurodegenerative diseases. This review will discuss how the latest advances in fundamental and translational research illuminate our understanding of NF biology, particularly their assembly, organisation, transport and degradation. We will emphasise the notion that filaments are not one entity and that future challenges will be to apprehend their diverse composition and structural heterogeneity and to scrutinize how this regulates signalling, sustains neuronal physiology and drives pathophysiology in disease.</p></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S095506742400005X/pdfft?md5=1f746678e923bd9ed8f0c346566d4c88&pid=1-s2.0-S095506742400005X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Neurofilaments: Novel findings and future challenges\",\"authors\":\"Jessy V. van Asperen, Farah Kotaich, Damien Caillol, Pascale Bomont\",\"doi\":\"10.1016/j.ceb.2024.102326\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Neurofilaments (NFs) are abundant cytoskeletal proteins that emerge as a critical hub for cell signalling within neurons. As we start to uncover essential roles of NFs in regulating microtubule and organelle dynamics, nerve conduction and neurotransmission, novel discoveries are expected to arise in genetics, with NFs identified as causal genes for various neurodegenerative diseases. This review will discuss how the latest advances in fundamental and translational research illuminate our understanding of NF biology, particularly their assembly, organisation, transport and degradation. We will emphasise the notion that filaments are not one entity and that future challenges will be to apprehend their diverse composition and structural heterogeneity and to scrutinize how this regulates signalling, sustains neuronal physiology and drives pathophysiology in disease.</p></div>\",\"PeriodicalId\":50608,\"journal\":{\"name\":\"Current Opinion in Cell Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S095506742400005X/pdfft?md5=1f746678e923bd9ed8f0c346566d4c88&pid=1-s2.0-S095506742400005X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095506742400005X\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095506742400005X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Neurofilaments: Novel findings and future challenges
Neurofilaments (NFs) are abundant cytoskeletal proteins that emerge as a critical hub for cell signalling within neurons. As we start to uncover essential roles of NFs in regulating microtubule and organelle dynamics, nerve conduction and neurotransmission, novel discoveries are expected to arise in genetics, with NFs identified as causal genes for various neurodegenerative diseases. This review will discuss how the latest advances in fundamental and translational research illuminate our understanding of NF biology, particularly their assembly, organisation, transport and degradation. We will emphasise the notion that filaments are not one entity and that future challenges will be to apprehend their diverse composition and structural heterogeneity and to scrutinize how this regulates signalling, sustains neuronal physiology and drives pathophysiology in disease.
期刊介绍:
Current Opinion in Cell Biology (COCEBI) is a highly respected journal that specializes in publishing authoritative, comprehensive, and systematic reviews in the field of cell biology. The journal's primary aim is to provide a clear and readable synthesis of the latest advances in cell biology, helping specialists stay current with the rapidly evolving field. Expert authors contribute to the journal by annotating and highlighting the most significant papers from the extensive body of research published annually, offering valuable insights and saving time for readers by distilling key findings.
COCEBI is part of the Current Opinion and Research (CO+RE) suite of journals, which leverages the legacy of editorial excellence, high impact, and global reach to ensure that the journal is a widely read resource integral to scientists' workflow. It is published by Elsevier, a publisher known for its commitment to excellence in scientific publishing and the communication of reproducible biomedical research aimed at improving human health. The journal's content is designed to be an invaluable resource for a diverse audience, including researchers, lecturers, teachers, professionals, policymakers, and students.