Jianfeng Hou , Dong Yang , Zhijie Chen , Xihan Tan , Lei Jiang , Bing-Jie Ni , Ning Han
{"title":"用于可持续氧气分离的新型双相陶瓷膜","authors":"Jianfeng Hou , Dong Yang , Zhijie Chen , Xihan Tan , Lei Jiang , Bing-Jie Ni , Ning Han","doi":"10.1016/j.horiz.2024.100095","DOIUrl":null,"url":null,"abstract":"<div><p>Mixed ionic–electronic conducting (MIEC) perovskite oxide membranes are greatly required in fields of oxygen separation. In this study, Gadolinium-doped Cerium (GDC) and La<sub>2</sub>NiO<sub>4</sub> (LNO) powders are prepared into dual-phase perovskite membranes by ball-milling and sintering. The mixed membranes show a distorted perovskite phase with orthorhombic structure and cubic structure. For oxygen permeability of membranes, the fluxes increase with the enhancement of temperatures or He sweep gas flows. The effects of four doping ratios (10 %, 20 %, 30 %, and 40 %) on oxygen permeability are discussed. Compared with the LNO membrane, the oxygen permeation fluxes of the four mixed membranes show varying degrees of improvement. And, the optimal doping ratio is 20 wt.%. The maximum oxygen permeation flux is ∼3.53 mL·min<sup>−1</sup>·cm<sup>−2</sup> in all test conditions. To further investigate the influence of different conditions on oxygen permeability, Arrhenius activation energy theory, kinetic analysis, and improvement factor are introduced to support the hypothesis. Simultaneously, the membranes have excellent tolerance to CO<sub>2</sub> atmosphere. The long-time stability (∼1200 min) under CO<sub>2</sub> atmosphere and recovery capability can endow the dual-phase perovskite membrane with great potential for numerous applications.</p></div>","PeriodicalId":101199,"journal":{"name":"Sustainable Horizons","volume":"10 ","pages":"Article 100095"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772737824000075/pdfft?md5=4ca5a18585b0be3c26c84c8d1258d763&pid=1-s2.0-S2772737824000075-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Novel dual-phase ceramic membrane for sustainable oxygen separation\",\"authors\":\"Jianfeng Hou , Dong Yang , Zhijie Chen , Xihan Tan , Lei Jiang , Bing-Jie Ni , Ning Han\",\"doi\":\"10.1016/j.horiz.2024.100095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mixed ionic–electronic conducting (MIEC) perovskite oxide membranes are greatly required in fields of oxygen separation. In this study, Gadolinium-doped Cerium (GDC) and La<sub>2</sub>NiO<sub>4</sub> (LNO) powders are prepared into dual-phase perovskite membranes by ball-milling and sintering. The mixed membranes show a distorted perovskite phase with orthorhombic structure and cubic structure. For oxygen permeability of membranes, the fluxes increase with the enhancement of temperatures or He sweep gas flows. The effects of four doping ratios (10 %, 20 %, 30 %, and 40 %) on oxygen permeability are discussed. Compared with the LNO membrane, the oxygen permeation fluxes of the four mixed membranes show varying degrees of improvement. And, the optimal doping ratio is 20 wt.%. The maximum oxygen permeation flux is ∼3.53 mL·min<sup>−1</sup>·cm<sup>−2</sup> in all test conditions. To further investigate the influence of different conditions on oxygen permeability, Arrhenius activation energy theory, kinetic analysis, and improvement factor are introduced to support the hypothesis. Simultaneously, the membranes have excellent tolerance to CO<sub>2</sub> atmosphere. The long-time stability (∼1200 min) under CO<sub>2</sub> atmosphere and recovery capability can endow the dual-phase perovskite membrane with great potential for numerous applications.</p></div>\",\"PeriodicalId\":101199,\"journal\":{\"name\":\"Sustainable Horizons\",\"volume\":\"10 \",\"pages\":\"Article 100095\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772737824000075/pdfft?md5=4ca5a18585b0be3c26c84c8d1258d763&pid=1-s2.0-S2772737824000075-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Horizons\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772737824000075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Horizons","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772737824000075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
混合离子电子导电(MIEC)包晶氧化物膜是氧气分离领域的重大需求。本研究通过球磨和烧结将掺钆铈(GDC)和La2NiO4(LNO)粉末制备成双相包晶氧化物膜。混合膜呈现出具有正方体结构和立方体结构的扭曲包晶相。对于膜的氧气渗透性,通量随着温度或 He 扫气流量的增加而增加。讨论了四种掺杂比例(10%、20%、30% 和 40%)对透氧率的影响。与 LNO 膜相比,四种混合膜的氧气渗透通量都有不同程度的提高。最佳掺杂率为 20 wt.%。在所有测试条件下,最大氧气渗透通量为 3.53 mL-min-1-cm-2。为了进一步研究不同条件对氧气渗透率的影响,引入了阿伦尼乌斯活化能理论、动力学分析和改进因子来支持假设。同时,膜对 CO2 大气也有很好的耐受性。在二氧化碳气氛下的长期稳定性(∼1200 分钟)和恢复能力赋予了双相包晶石膜巨大的应用潜力。
Novel dual-phase ceramic membrane for sustainable oxygen separation
Mixed ionic–electronic conducting (MIEC) perovskite oxide membranes are greatly required in fields of oxygen separation. In this study, Gadolinium-doped Cerium (GDC) and La2NiO4 (LNO) powders are prepared into dual-phase perovskite membranes by ball-milling and sintering. The mixed membranes show a distorted perovskite phase with orthorhombic structure and cubic structure. For oxygen permeability of membranes, the fluxes increase with the enhancement of temperatures or He sweep gas flows. The effects of four doping ratios (10 %, 20 %, 30 %, and 40 %) on oxygen permeability are discussed. Compared with the LNO membrane, the oxygen permeation fluxes of the four mixed membranes show varying degrees of improvement. And, the optimal doping ratio is 20 wt.%. The maximum oxygen permeation flux is ∼3.53 mL·min−1·cm−2 in all test conditions. To further investigate the influence of different conditions on oxygen permeability, Arrhenius activation energy theory, kinetic analysis, and improvement factor are introduced to support the hypothesis. Simultaneously, the membranes have excellent tolerance to CO2 atmosphere. The long-time stability (∼1200 min) under CO2 atmosphere and recovery capability can endow the dual-phase perovskite membrane with great potential for numerous applications.