Yanyi Zheng, Silu Zhang, Zhizhu Zhang, Tengxun Zhang, Xin Teng, Guoxun Xiao, Song Huang
{"title":"分离嗜酸乳杆菌菌株及其在饮食诱导肥胖小鼠模型中的抗肥胖作用","authors":"Yanyi Zheng, Silu Zhang, Zhizhu Zhang, Tengxun Zhang, Xin Teng, Guoxun Xiao, Song Huang","doi":"10.1093/lambio/ovae021","DOIUrl":null,"url":null,"abstract":"<p><p>Intestinal microbiota is a potential determinant of obesity, with probiotic bile salt hydrolase (BSH) as one of the key mechanisms in the anti-obesity effects. In this study, we present a Lactobacillus acidophilus GOLDGUT-LA100 (LA100) with high BSH activity, good gastric acid and bile salt tolerance, and a potential anti-obesity effect. LA100's anti-obesity effects were evaluated in a high-fat diet-induced, obese mouse model. LA100 administration alleviates high-fat diet-induced pathophysiological symptoms, such as body weight gain, high serum glucose and cholesterol level, hepatic lipid accumulation, and adipose inflammation. These results demonstrate concrete anti-obesity benefit in animal models and show promising applications in future clinical studies.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isolation of Lactobacillus acidophilus strain and its anti-obesity effect in a diet induced obese murine model.\",\"authors\":\"Yanyi Zheng, Silu Zhang, Zhizhu Zhang, Tengxun Zhang, Xin Teng, Guoxun Xiao, Song Huang\",\"doi\":\"10.1093/lambio/ovae021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intestinal microbiota is a potential determinant of obesity, with probiotic bile salt hydrolase (BSH) as one of the key mechanisms in the anti-obesity effects. In this study, we present a Lactobacillus acidophilus GOLDGUT-LA100 (LA100) with high BSH activity, good gastric acid and bile salt tolerance, and a potential anti-obesity effect. LA100's anti-obesity effects were evaluated in a high-fat diet-induced, obese mouse model. LA100 administration alleviates high-fat diet-induced pathophysiological symptoms, such as body weight gain, high serum glucose and cholesterol level, hepatic lipid accumulation, and adipose inflammation. These results demonstrate concrete anti-obesity benefit in animal models and show promising applications in future clinical studies.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/lambio/ovae021\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/lambio/ovae021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Isolation of Lactobacillus acidophilus strain and its anti-obesity effect in a diet induced obese murine model.
Intestinal microbiota is a potential determinant of obesity, with probiotic bile salt hydrolase (BSH) as one of the key mechanisms in the anti-obesity effects. In this study, we present a Lactobacillus acidophilus GOLDGUT-LA100 (LA100) with high BSH activity, good gastric acid and bile salt tolerance, and a potential anti-obesity effect. LA100's anti-obesity effects were evaluated in a high-fat diet-induced, obese mouse model. LA100 administration alleviates high-fat diet-induced pathophysiological symptoms, such as body weight gain, high serum glucose and cholesterol level, hepatic lipid accumulation, and adipose inflammation. These results demonstrate concrete anti-obesity benefit in animal models and show promising applications in future clinical studies.