Madline P Gund, Jusef Naim, Halil Muhammed Bayhan, Matthias Hannig, Barbara Gärtner, Alexander Halfmann, Gabor Boros, Stefan Rupf
{"title":"牙科气溶胶产生治疗:面罩和外科口罩污染模式的比较。","authors":"Madline P Gund, Jusef Naim, Halil Muhammed Bayhan, Matthias Hannig, Barbara Gärtner, Alexander Halfmann, Gabor Boros, Stefan Rupf","doi":"10.1080/15459624.2023.2285363","DOIUrl":null,"url":null,"abstract":"<p><p>During the COVID-19 pandemic, dental face shields were recommended to protect the eyes. This study aimed to examine to what extent face shield and mask contamination differ when a pre-procedural mouth rinsing with Chlorhexidine (CHX) is conducted before treatment. In this prospective, randomized study, three groups of subjects were formed (rinsing with 0.1% CHX, water, or no rinsing (control) before aerosol-producing treatments). After each of the 301 treatments, the practitioner's face shield was swabbed with eSwab and the mask was brought into contact with agar plates. Sampling was done from the exterior surface only. Samples were cultured for 48 h at 35 °C under aerobic and anaerobic conditions. Bacteria were classified by phenotypic characteristics, biochemical test methods, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Colony-forming units were counted and mean values were compared (WSR, H-test, U-test, <i>p</i> < 0.05). Within each subject group, face shields showed significantly more contamination than surgical masks (control group: 350 CFU, 50 CFU; intervention water: 270 CFU, 40 CFU; intervention CHX: 250 CFU, 30 CFU). Comparison of face shields of the different subject groups did not reveal any statistically significant differences. However, CHX resulted in a statistically significant bacterial reduction on surgical masks compared to the water and control group (control: 50 CFU, intervention water: 40 CFU, intervention CHX: 30 CFU). Contamination of face shields and surgical masks was highest in the control group, followed by the water group, and lowest in the intervention group with CHX. <i>Streptococcus spp</i>. and <i>Staphylococcus spp</i>. dominated, representing the oral and cutaneous flora. Contamination of masks worn with or without face shields did not differ. Presumably, face shields intercept first splashes and droplets, while the masks were mainly exposed to bioaerosol mist. Consequently, face shields protect the facial region and surroundings from splashes and droplets, but not the mask itself. A pre-procedural mouth rinse with CHX had no statistically significant reducing effect on contamination of the face shield, but a statistically significant reducing effect was observed on contamination of the mask.</p>","PeriodicalId":16599,"journal":{"name":"Journal of Occupational and Environmental Hygiene","volume":" ","pages":"126-135"},"PeriodicalIF":1.5000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dental aerosol-producing treatments: Comparison of contamination patterns of face shields and surgical masks.\",\"authors\":\"Madline P Gund, Jusef Naim, Halil Muhammed Bayhan, Matthias Hannig, Barbara Gärtner, Alexander Halfmann, Gabor Boros, Stefan Rupf\",\"doi\":\"10.1080/15459624.2023.2285363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During the COVID-19 pandemic, dental face shields were recommended to protect the eyes. This study aimed to examine to what extent face shield and mask contamination differ when a pre-procedural mouth rinsing with Chlorhexidine (CHX) is conducted before treatment. In this prospective, randomized study, three groups of subjects were formed (rinsing with 0.1% CHX, water, or no rinsing (control) before aerosol-producing treatments). After each of the 301 treatments, the practitioner's face shield was swabbed with eSwab and the mask was brought into contact with agar plates. Sampling was done from the exterior surface only. Samples were cultured for 48 h at 35 °C under aerobic and anaerobic conditions. Bacteria were classified by phenotypic characteristics, biochemical test methods, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Colony-forming units were counted and mean values were compared (WSR, H-test, U-test, <i>p</i> < 0.05). Within each subject group, face shields showed significantly more contamination than surgical masks (control group: 350 CFU, 50 CFU; intervention water: 270 CFU, 40 CFU; intervention CHX: 250 CFU, 30 CFU). Comparison of face shields of the different subject groups did not reveal any statistically significant differences. However, CHX resulted in a statistically significant bacterial reduction on surgical masks compared to the water and control group (control: 50 CFU, intervention water: 40 CFU, intervention CHX: 30 CFU). Contamination of face shields and surgical masks was highest in the control group, followed by the water group, and lowest in the intervention group with CHX. <i>Streptococcus spp</i>. and <i>Staphylococcus spp</i>. dominated, representing the oral and cutaneous flora. Contamination of masks worn with or without face shields did not differ. Presumably, face shields intercept first splashes and droplets, while the masks were mainly exposed to bioaerosol mist. Consequently, face shields protect the facial region and surroundings from splashes and droplets, but not the mask itself. A pre-procedural mouth rinse with CHX had no statistically significant reducing effect on contamination of the face shield, but a statistically significant reducing effect was observed on contamination of the mask.</p>\",\"PeriodicalId\":16599,\"journal\":{\"name\":\"Journal of Occupational and Environmental Hygiene\",\"volume\":\" \",\"pages\":\"126-135\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Occupational and Environmental Hygiene\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1080/15459624.2023.2285363\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/23 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Occupational and Environmental Hygiene","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15459624.2023.2285363","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/23 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Dental aerosol-producing treatments: Comparison of contamination patterns of face shields and surgical masks.
During the COVID-19 pandemic, dental face shields were recommended to protect the eyes. This study aimed to examine to what extent face shield and mask contamination differ when a pre-procedural mouth rinsing with Chlorhexidine (CHX) is conducted before treatment. In this prospective, randomized study, three groups of subjects were formed (rinsing with 0.1% CHX, water, or no rinsing (control) before aerosol-producing treatments). After each of the 301 treatments, the practitioner's face shield was swabbed with eSwab and the mask was brought into contact with agar plates. Sampling was done from the exterior surface only. Samples were cultured for 48 h at 35 °C under aerobic and anaerobic conditions. Bacteria were classified by phenotypic characteristics, biochemical test methods, and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). Colony-forming units were counted and mean values were compared (WSR, H-test, U-test, p < 0.05). Within each subject group, face shields showed significantly more contamination than surgical masks (control group: 350 CFU, 50 CFU; intervention water: 270 CFU, 40 CFU; intervention CHX: 250 CFU, 30 CFU). Comparison of face shields of the different subject groups did not reveal any statistically significant differences. However, CHX resulted in a statistically significant bacterial reduction on surgical masks compared to the water and control group (control: 50 CFU, intervention water: 40 CFU, intervention CHX: 30 CFU). Contamination of face shields and surgical masks was highest in the control group, followed by the water group, and lowest in the intervention group with CHX. Streptococcus spp. and Staphylococcus spp. dominated, representing the oral and cutaneous flora. Contamination of masks worn with or without face shields did not differ. Presumably, face shields intercept first splashes and droplets, while the masks were mainly exposed to bioaerosol mist. Consequently, face shields protect the facial region and surroundings from splashes and droplets, but not the mask itself. A pre-procedural mouth rinse with CHX had no statistically significant reducing effect on contamination of the face shield, but a statistically significant reducing effect was observed on contamination of the mask.
期刊介绍:
The Journal of Occupational and Environmental Hygiene ( JOEH ) is a joint publication of the American Industrial Hygiene Association (AIHA®) and ACGIH®. The JOEH is a peer-reviewed journal devoted to enhancing the knowledge and practice of occupational and environmental hygiene and safety by widely disseminating research articles and applied studies of the highest quality.
The JOEH provides a written medium for the communication of ideas, methods, processes, and research in core and emerging areas of occupational and environmental hygiene. Core domains include, but are not limited to: exposure assessment, control strategies, ergonomics, and risk analysis. Emerging domains include, but are not limited to: sensor technology, emergency preparedness and response, changing workforce, and management and analysis of "big" data.