Mahyar Firouzi, Kris Baetens, Eva Swinnen, Chris Baeken, Frank Van Overwalle, Natacha Deroost
{"title":"经颅直流电刺激初级运动皮层能否改善帕金森病患者的内隐运动序列学习?","authors":"Mahyar Firouzi, Kris Baetens, Eva Swinnen, Chris Baeken, Frank Van Overwalle, Natacha Deroost","doi":"10.1002/jnr.25311","DOIUrl":null,"url":null,"abstract":"<p>Implicit motor sequence learning (IMSL) is a cognitive function that is known to be associated with impaired motor function in Parkinson's disease (PD). We previously reported positive effects of transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) on IMSL in 11 individuals with PD with mild cognitive impairments (MCI), with the largest effects occurring during reacquisition. In the present study, we included 35 individuals with PD, with (<i>n</i> = 15) and without MCI (<i>n</i> = 20), and 35 age- and sex-matched controls without PD, with (<i>n</i> = 13) and without MCI (<i>n</i> = 22). We used mixed-effects models to analyze anodal M1 tDCS effects on acquisition (during tDCS), short-term (five minutes post-tDCS) and long-term reacquisition (one-week post-tDCS) of general and sequence-specific learning skills, as measured by the serial reaction time task. At long-term reacquisition, anodal tDCS resulted in smaller general learning effects compared to sham, only in the PD group, <i>p</i> = .018, possibly due to floor effects. Anodal tDCS facilitated the acquisition of sequence-specific learning (<i>M</i> = 54.26 ms) compared to sham (<i>M</i> = 38.98 ms), <i>p</i> = .003, regardless of group (PD/controls). Further analyses revealed that this positive effect was the largest in the PD-MCI group (anodal: <i>M</i> = 69.07 ms; sham: <i>M</i> = 24.33 ms), <i>p</i> < .001. Although the observed effect did not exceed the stimulation period, this single-session tDCS study confirms the potential of tDCS to enhance IMSL, with the largest effects observed in patients with lower cognitive status. These findings add to the body of evidence that anodal tDCS can beneficially modulate the abnormal basal ganglia network activity that occurs in PD.</p>","PeriodicalId":16490,"journal":{"name":"Journal of Neuroscience Research","volume":"102 2","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Does transcranial direct current stimulation of the primary motor cortex improve implicit motor sequence learning in Parkinson's disease?\",\"authors\":\"Mahyar Firouzi, Kris Baetens, Eva Swinnen, Chris Baeken, Frank Van Overwalle, Natacha Deroost\",\"doi\":\"10.1002/jnr.25311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Implicit motor sequence learning (IMSL) is a cognitive function that is known to be associated with impaired motor function in Parkinson's disease (PD). We previously reported positive effects of transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) on IMSL in 11 individuals with PD with mild cognitive impairments (MCI), with the largest effects occurring during reacquisition. In the present study, we included 35 individuals with PD, with (<i>n</i> = 15) and without MCI (<i>n</i> = 20), and 35 age- and sex-matched controls without PD, with (<i>n</i> = 13) and without MCI (<i>n</i> = 22). We used mixed-effects models to analyze anodal M1 tDCS effects on acquisition (during tDCS), short-term (five minutes post-tDCS) and long-term reacquisition (one-week post-tDCS) of general and sequence-specific learning skills, as measured by the serial reaction time task. At long-term reacquisition, anodal tDCS resulted in smaller general learning effects compared to sham, only in the PD group, <i>p</i> = .018, possibly due to floor effects. Anodal tDCS facilitated the acquisition of sequence-specific learning (<i>M</i> = 54.26 ms) compared to sham (<i>M</i> = 38.98 ms), <i>p</i> = .003, regardless of group (PD/controls). Further analyses revealed that this positive effect was the largest in the PD-MCI group (anodal: <i>M</i> = 69.07 ms; sham: <i>M</i> = 24.33 ms), <i>p</i> < .001. Although the observed effect did not exceed the stimulation period, this single-session tDCS study confirms the potential of tDCS to enhance IMSL, with the largest effects observed in patients with lower cognitive status. These findings add to the body of evidence that anodal tDCS can beneficially modulate the abnormal basal ganglia network activity that occurs in PD.</p>\",\"PeriodicalId\":16490,\"journal\":{\"name\":\"Journal of Neuroscience Research\",\"volume\":\"102 2\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Neuroscience Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jnr.25311\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnr.25311","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Does transcranial direct current stimulation of the primary motor cortex improve implicit motor sequence learning in Parkinson's disease?
Implicit motor sequence learning (IMSL) is a cognitive function that is known to be associated with impaired motor function in Parkinson's disease (PD). We previously reported positive effects of transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) on IMSL in 11 individuals with PD with mild cognitive impairments (MCI), with the largest effects occurring during reacquisition. In the present study, we included 35 individuals with PD, with (n = 15) and without MCI (n = 20), and 35 age- and sex-matched controls without PD, with (n = 13) and without MCI (n = 22). We used mixed-effects models to analyze anodal M1 tDCS effects on acquisition (during tDCS), short-term (five minutes post-tDCS) and long-term reacquisition (one-week post-tDCS) of general and sequence-specific learning skills, as measured by the serial reaction time task. At long-term reacquisition, anodal tDCS resulted in smaller general learning effects compared to sham, only in the PD group, p = .018, possibly due to floor effects. Anodal tDCS facilitated the acquisition of sequence-specific learning (M = 54.26 ms) compared to sham (M = 38.98 ms), p = .003, regardless of group (PD/controls). Further analyses revealed that this positive effect was the largest in the PD-MCI group (anodal: M = 69.07 ms; sham: M = 24.33 ms), p < .001. Although the observed effect did not exceed the stimulation period, this single-session tDCS study confirms the potential of tDCS to enhance IMSL, with the largest effects observed in patients with lower cognitive status. These findings add to the body of evidence that anodal tDCS can beneficially modulate the abnormal basal ganglia network activity that occurs in PD.
期刊介绍:
The Journal of Neuroscience Research (JNR) publishes novel research results that will advance our understanding of the development, function and pathophysiology of the nervous system, using molecular, cellular, systems, and translational approaches. JNR covers both basic research and clinical aspects of neurology, neuropathology, psychiatry or psychology.
The journal focuses on uncovering the intricacies of brain structure and function. Research published in JNR covers all species from invertebrates to humans, and the reports inform the readers about the function and organization of the nervous system, with emphasis on how disease modifies the function and organization.