Goce Bogdanoski, Fabienne Lucas, Wolfgang Kern, Kamila Czechowska
{"title":"转变医疗设备的监管环境,创建适用的人工智能(AI)细胞测量解决方案。","authors":"Goce Bogdanoski, Fabienne Lucas, Wolfgang Kern, Kamila Czechowska","doi":"10.1002/cyto.b.22167","DOIUrl":null,"url":null,"abstract":"<p>The implementation of medical software and artificial intelligence (AI) algorithms into routine clinical cytometry diagnostic practice requires a thorough understanding of regulatory requirements and challenges throughout the cytometry software product lifecycle. To provide cytometry software developers, computational scientists, researchers, industry professionals, and diagnostic physicians/pathologists with an introduction to European Union (EU) and United States (US) regulatory frameworks. Informed by community feedback and needs assessment established during two international cytometry workshops, this article provides an overview of regulatory landscapes as they pertain to the application of AI, AI-enabled medical devices, and Software as a Medical Device in diagnostic flow cytometry. Evolving regulatory frameworks are discussed, and specific examples regarding cytometry instruments, analysis software and clinical flow cytometry in-vitro diagnostic assays are provided. An important consideration for cytometry software development is the modular approach. As such, modules can be segregated and treated as independent components based on the medical purpose and risk and become subjected to a range of context-dependent compliance and regulatory requirements throughout their life cycle. Knowledge of regulatory and compliance requirements enhances the communication and collaboration between developers, researchers, end-users and regulators. This connection is essential to translate scientific innovation into diagnostic practice and to continue to shape the development and revision of new policies, standards, and approaches.</p>","PeriodicalId":10883,"journal":{"name":"Cytometry Part B: Clinical Cytometry","volume":"106 4","pages":"294-307"},"PeriodicalIF":2.3000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Translating the regulatory landscape of medical devices to create fit-for-purpose artificial intelligence (AI) cytometry solutions\",\"authors\":\"Goce Bogdanoski, Fabienne Lucas, Wolfgang Kern, Kamila Czechowska\",\"doi\":\"10.1002/cyto.b.22167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The implementation of medical software and artificial intelligence (AI) algorithms into routine clinical cytometry diagnostic practice requires a thorough understanding of regulatory requirements and challenges throughout the cytometry software product lifecycle. To provide cytometry software developers, computational scientists, researchers, industry professionals, and diagnostic physicians/pathologists with an introduction to European Union (EU) and United States (US) regulatory frameworks. Informed by community feedback and needs assessment established during two international cytometry workshops, this article provides an overview of regulatory landscapes as they pertain to the application of AI, AI-enabled medical devices, and Software as a Medical Device in diagnostic flow cytometry. Evolving regulatory frameworks are discussed, and specific examples regarding cytometry instruments, analysis software and clinical flow cytometry in-vitro diagnostic assays are provided. An important consideration for cytometry software development is the modular approach. As such, modules can be segregated and treated as independent components based on the medical purpose and risk and become subjected to a range of context-dependent compliance and regulatory requirements throughout their life cycle. Knowledge of regulatory and compliance requirements enhances the communication and collaboration between developers, researchers, end-users and regulators. This connection is essential to translate scientific innovation into diagnostic practice and to continue to shape the development and revision of new policies, standards, and approaches.</p>\",\"PeriodicalId\":10883,\"journal\":{\"name\":\"Cytometry Part B: Clinical Cytometry\",\"volume\":\"106 4\",\"pages\":\"294-307\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cytometry Part B: Clinical Cytometry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cyto.b.22167\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytometry Part B: Clinical Cytometry","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cyto.b.22167","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
Translating the regulatory landscape of medical devices to create fit-for-purpose artificial intelligence (AI) cytometry solutions
The implementation of medical software and artificial intelligence (AI) algorithms into routine clinical cytometry diagnostic practice requires a thorough understanding of regulatory requirements and challenges throughout the cytometry software product lifecycle. To provide cytometry software developers, computational scientists, researchers, industry professionals, and diagnostic physicians/pathologists with an introduction to European Union (EU) and United States (US) regulatory frameworks. Informed by community feedback and needs assessment established during two international cytometry workshops, this article provides an overview of regulatory landscapes as they pertain to the application of AI, AI-enabled medical devices, and Software as a Medical Device in diagnostic flow cytometry. Evolving regulatory frameworks are discussed, and specific examples regarding cytometry instruments, analysis software and clinical flow cytometry in-vitro diagnostic assays are provided. An important consideration for cytometry software development is the modular approach. As such, modules can be segregated and treated as independent components based on the medical purpose and risk and become subjected to a range of context-dependent compliance and regulatory requirements throughout their life cycle. Knowledge of regulatory and compliance requirements enhances the communication and collaboration between developers, researchers, end-users and regulators. This connection is essential to translate scientific innovation into diagnostic practice and to continue to shape the development and revision of new policies, standards, and approaches.
期刊介绍:
Cytometry Part B: Clinical Cytometry features original research reports, in-depth reviews and special issues that directly relate to and palpably impact clinical flow, mass and image-based cytometry. These may include clinical and translational investigations important in the diagnostic, prognostic and therapeutic management of patients. Thus, we welcome research papers from various disciplines related [but not limited to] hematopathologists, hematologists, immunologists and cell biologists with clinically relevant and innovative studies investigating individual-cell analytics and/or separations. In addition to the types of papers indicated above, we also welcome Letters to the Editor, describing case reports or important medical or technical topics relevant to our readership without the length and depth of a full original report.