软骨细胞中 Piezo1 的表达控制着软骨内骨化和骨关节炎的发展。

IF 14.3 1区 医学 Q1 CELL & TISSUE ENGINEERING
Laura J Brylka, Assil-Ramin Alimy, Miriam E A Tschaffon-Müller, Shan Jiang, Tobias Malte Ballhause, Anke Baranowsky, Simon von Kroge, Julian Delsmann, Eva Pawlus, Kian Eghbalian, Klaus Püschel, Astrid Schoppa, Melanie Haffner-Luntzer, David J Beech, Frank Timo Beil, Michael Amling, Johannes Keller, Anita Ignatius, Timur A Yorgan, Tim Rolvien, Thorsten Schinke
{"title":"软骨细胞中 Piezo1 的表达控制着软骨内骨化和骨关节炎的发展。","authors":"Laura J Brylka, Assil-Ramin Alimy, Miriam E A Tschaffon-Müller, Shan Jiang, Tobias Malte Ballhause, Anke Baranowsky, Simon von Kroge, Julian Delsmann, Eva Pawlus, Kian Eghbalian, Klaus Püschel, Astrid Schoppa, Melanie Haffner-Luntzer, David J Beech, Frank Timo Beil, Michael Amling, Johannes Keller, Anita Ignatius, Timur A Yorgan, Tim Rolvien, Thorsten Schinke","doi":"10.1038/s41413-024-00315-x","DOIUrl":null,"url":null,"abstract":"<p><p>Piezo proteins are mechanically activated ion channels, which are required for mechanosensing functions in a variety of cell types. While we and others have previously demonstrated that the expression of Piezo1 in osteoblast lineage cells is essential for bone-anabolic processes, there was only suggestive evidence indicating a role of Piezo1 and/or Piezo2 in cartilage. Here we addressed the question if and how chondrocyte expression of the mechanosensitive proteins Piezo1 or Piezo2 controls physiological endochondral ossification and pathological osteoarthritis (OA) development. Mice with chondrocyte-specific inactivation of Piezo1 (Piezo1<sup>Col2a1Cre</sup>), but not of Piezo2, developed a near absence of trabecular bone below the chondrogenic growth plate postnatally. Moreover, all Piezo1<sup>Col2a1Cre</sup> animals displayed multiple fractures of rib bones at 7 days of age, which were located close to the growth plates. While skeletal growth was only mildly affected in these mice, OA pathologies were markedly less pronounced compared to littermate controls at 60 weeks of age. Likewise, when OA was induced by anterior cruciate ligament transection, only the chondrocyte inactivation of Piezo1, not of Piezo2, resulted in attenuated articular cartilage degeneration. Importantly, osteophyte formation and maturation were also reduced in Piezo1<sup>Col2a1Cre</sup> mice. We further observed increased Piezo1 protein abundance in cartilaginous zones of human osteophytes. Finally, we identified Ptgs2 and Ccn2 as potentially relevant Piezo1 downstream genes in chondrocytes. Collectively, our data do not only demonstrate that Piezo1 is a critical regulator of physiological and pathological endochondral ossification processes, but also suggest that Piezo1 antagonists may be established as a novel approach to limit osteophyte formation in OA.</p>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":null,"pages":null},"PeriodicalIF":14.3000,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10891122/pdf/","citationCount":"0","resultStr":"{\"title\":\"Piezo1 expression in chondrocytes controls endochondral ossification and osteoarthritis development.\",\"authors\":\"Laura J Brylka, Assil-Ramin Alimy, Miriam E A Tschaffon-Müller, Shan Jiang, Tobias Malte Ballhause, Anke Baranowsky, Simon von Kroge, Julian Delsmann, Eva Pawlus, Kian Eghbalian, Klaus Püschel, Astrid Schoppa, Melanie Haffner-Luntzer, David J Beech, Frank Timo Beil, Michael Amling, Johannes Keller, Anita Ignatius, Timur A Yorgan, Tim Rolvien, Thorsten Schinke\",\"doi\":\"10.1038/s41413-024-00315-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Piezo proteins are mechanically activated ion channels, which are required for mechanosensing functions in a variety of cell types. While we and others have previously demonstrated that the expression of Piezo1 in osteoblast lineage cells is essential for bone-anabolic processes, there was only suggestive evidence indicating a role of Piezo1 and/or Piezo2 in cartilage. Here we addressed the question if and how chondrocyte expression of the mechanosensitive proteins Piezo1 or Piezo2 controls physiological endochondral ossification and pathological osteoarthritis (OA) development. Mice with chondrocyte-specific inactivation of Piezo1 (Piezo1<sup>Col2a1Cre</sup>), but not of Piezo2, developed a near absence of trabecular bone below the chondrogenic growth plate postnatally. Moreover, all Piezo1<sup>Col2a1Cre</sup> animals displayed multiple fractures of rib bones at 7 days of age, which were located close to the growth plates. While skeletal growth was only mildly affected in these mice, OA pathologies were markedly less pronounced compared to littermate controls at 60 weeks of age. Likewise, when OA was induced by anterior cruciate ligament transection, only the chondrocyte inactivation of Piezo1, not of Piezo2, resulted in attenuated articular cartilage degeneration. Importantly, osteophyte formation and maturation were also reduced in Piezo1<sup>Col2a1Cre</sup> mice. We further observed increased Piezo1 protein abundance in cartilaginous zones of human osteophytes. Finally, we identified Ptgs2 and Ccn2 as potentially relevant Piezo1 downstream genes in chondrocytes. Collectively, our data do not only demonstrate that Piezo1 is a critical regulator of physiological and pathological endochondral ossification processes, but also suggest that Piezo1 antagonists may be established as a novel approach to limit osteophyte formation in OA.</p>\",\"PeriodicalId\":9134,\"journal\":{\"name\":\"Bone Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2024-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10891122/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bone Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41413-024-00315-x\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41413-024-00315-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

压电蛋白是机械激活的离子通道,在多种细胞类型中需要机械感应功能。我们和其他研究人员之前已经证明,成骨细胞系细胞中 Piezo1 的表达对骨合成代谢过程至关重要,但只有提示性证据表明 Piezo1 和/或 Piezo2 在软骨中发挥作用。在此,我们探讨了软骨细胞表达机械敏感蛋白 Piezo1 或 Piezo2 是否以及如何控制生理性软骨内骨化和病理性骨关节炎(OA)的发生这一问题。软骨细胞特异性失活 Piezo1(Piezo1Col2a1Cre)而非 Piezo2 的小鼠在出生后软骨生长板下方几乎没有骨小梁。此外,所有 Piezo1Col2a1Cre 动物在 7 日龄时都会出现多发性肋骨骨折,骨折部位靠近生长板。虽然这些小鼠的骨骼生长只受到轻微影响,但与同窝对照组相比,这些小鼠在60周龄时的OA病变明显减轻。同样,当通过前十字韧带横断诱发 OA 时,只有 Piezo1 而不是 Piezo2 的软骨细胞失活才会导致关节软骨退化减轻。重要的是,Piezo1Col2a1Cre 小鼠的骨赘形成和成熟也有所减少。我们进一步观察到,人类骨质增生软骨区的 Piezo1 蛋白丰度增加。最后,我们发现 Ptgs2 和 Ccn2 可能是软骨细胞中与 Piezo1 相关的下游基因。总之,我们的数据不仅证明了 Piezo1 是生理和病理软骨内骨化过程的关键调控因子,还表明 Piezo1 拮抗剂可能成为限制 OA 骨质增生形成的一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Piezo1 expression in chondrocytes controls endochondral ossification and osteoarthritis development.

Piezo1 expression in chondrocytes controls endochondral ossification and osteoarthritis development.

Piezo proteins are mechanically activated ion channels, which are required for mechanosensing functions in a variety of cell types. While we and others have previously demonstrated that the expression of Piezo1 in osteoblast lineage cells is essential for bone-anabolic processes, there was only suggestive evidence indicating a role of Piezo1 and/or Piezo2 in cartilage. Here we addressed the question if and how chondrocyte expression of the mechanosensitive proteins Piezo1 or Piezo2 controls physiological endochondral ossification and pathological osteoarthritis (OA) development. Mice with chondrocyte-specific inactivation of Piezo1 (Piezo1Col2a1Cre), but not of Piezo2, developed a near absence of trabecular bone below the chondrogenic growth plate postnatally. Moreover, all Piezo1Col2a1Cre animals displayed multiple fractures of rib bones at 7 days of age, which were located close to the growth plates. While skeletal growth was only mildly affected in these mice, OA pathologies were markedly less pronounced compared to littermate controls at 60 weeks of age. Likewise, when OA was induced by anterior cruciate ligament transection, only the chondrocyte inactivation of Piezo1, not of Piezo2, resulted in attenuated articular cartilage degeneration. Importantly, osteophyte formation and maturation were also reduced in Piezo1Col2a1Cre mice. We further observed increased Piezo1 protein abundance in cartilaginous zones of human osteophytes. Finally, we identified Ptgs2 and Ccn2 as potentially relevant Piezo1 downstream genes in chondrocytes. Collectively, our data do not only demonstrate that Piezo1 is a critical regulator of physiological and pathological endochondral ossification processes, but also suggest that Piezo1 antagonists may be established as a novel approach to limit osteophyte formation in OA.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bone Research
Bone Research CELL & TISSUE ENGINEERING-
CiteScore
20.00
自引率
4.70%
发文量
289
审稿时长
20 weeks
期刊介绍: Established in 2013, Bone Research is a newly-founded English-language periodical that centers on the basic and clinical facets of bone biology, pathophysiology, and regeneration. It is dedicated to championing key findings emerging from both basic investigations and clinical research concerning bone-related topics. The journal's objective is to globally disseminate research in bone-related physiology, pathology, diseases, and treatment, contributing to the advancement of knowledge in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信