Nabil Chems Eddine, Maria Alessandra Ragusa, Dušan D. Repovš
{"title":"各向异性变指数索波列夫空间的集中-紧凑性原理及其应用","authors":"Nabil Chems Eddine, Maria Alessandra Ragusa, Dušan D. Repovš","doi":"10.1007/s13540-024-00246-8","DOIUrl":null,"url":null,"abstract":"<p>We obtain critical embeddings and the concentration-compactness principle for the anisotropic variable exponent Sobolev spaces. As an application of these results,we confirm the existence of and find infinitely many nontrivial solutions for a class of nonlinear critical anisotropic elliptic equations involving variable exponents and two real parameters. With the groundwork laid in this work, there is potential for future extensions, particularly in extending the concentration-compactness principle to anisotropic fractional order Sobolev spaces with variable exponents in bounded domains. This extension could find applications in solving the generalized fractional Brezis–Nirenberg problem.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the concentration-compactness principle for anisotropic variable exponent Sobolev spaces and its applications\",\"authors\":\"Nabil Chems Eddine, Maria Alessandra Ragusa, Dušan D. Repovš\",\"doi\":\"10.1007/s13540-024-00246-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We obtain critical embeddings and the concentration-compactness principle for the anisotropic variable exponent Sobolev spaces. As an application of these results,we confirm the existence of and find infinitely many nontrivial solutions for a class of nonlinear critical anisotropic elliptic equations involving variable exponents and two real parameters. With the groundwork laid in this work, there is potential for future extensions, particularly in extending the concentration-compactness principle to anisotropic fractional order Sobolev spaces with variable exponents in bounded domains. This extension could find applications in solving the generalized fractional Brezis–Nirenberg problem.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00246-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00246-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
On the concentration-compactness principle for anisotropic variable exponent Sobolev spaces and its applications
We obtain critical embeddings and the concentration-compactness principle for the anisotropic variable exponent Sobolev spaces. As an application of these results,we confirm the existence of and find infinitely many nontrivial solutions for a class of nonlinear critical anisotropic elliptic equations involving variable exponents and two real parameters. With the groundwork laid in this work, there is potential for future extensions, particularly in extending the concentration-compactness principle to anisotropic fractional order Sobolev spaces with variable exponents in bounded domains. This extension could find applications in solving the generalized fractional Brezis–Nirenberg problem.