关于随机映射的最深循环

IF 0.9 2区 数学 Q2 MATHEMATICS
Ljuben Mutafchiev , Steven Finch
{"title":"关于随机映射的最深循环","authors":"Ljuben Mutafchiev ,&nbsp;Steven Finch","doi":"10.1016/j.jcta.2024.105875","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the set of all mappings <span><math><mi>T</mi><mo>:</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo><mo>→</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span>. The corresponding graph of <em>T</em> is a union of disjoint connected unicyclic components. We assume that each <span><math><mi>T</mi><mo>∈</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is chosen uniformly at random (i.e., with probability <span><math><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>n</mi></mrow></msup></math></span>). The cycle of <em>T</em> contained within its largest component is called the <em>deepest</em> one. For any <span><math><mi>T</mi><mo>∈</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, let <span><math><msub><mrow><mi>ν</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><msub><mrow><mi>ν</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>T</mi><mo>)</mo></math></span> denote the length of this cycle. In this paper, we establish the convergence in distribution of <span><math><msub><mrow><mi>ν</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>/</mo><msqrt><mrow><mi>n</mi></mrow></msqrt></math></span> and find the limits of its expectation and variance as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>. For <em>n</em> large enough, we also show that nearly 55% of all cyclic vertices of a random mapping <span><math><mi>T</mi><mo>∈</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> lie in its deepest cycle and that a vertex from the longest cycle of <em>T</em> does not belong to its largest component with approximate probability 0.075.</p></div>","PeriodicalId":50230,"journal":{"name":"Journal of Combinatorial Theory Series A","volume":"206 ","pages":"Article 105875"},"PeriodicalIF":0.9000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the deepest cycle of a random mapping\",\"authors\":\"Ljuben Mutafchiev ,&nbsp;Steven Finch\",\"doi\":\"10.1016/j.jcta.2024.105875\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> be the set of all mappings <span><math><mi>T</mi><mo>:</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo><mo>→</mo><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>n</mi><mo>}</mo></math></span>. The corresponding graph of <em>T</em> is a union of disjoint connected unicyclic components. We assume that each <span><math><mi>T</mi><mo>∈</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is chosen uniformly at random (i.e., with probability <span><math><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>n</mi></mrow></msup></math></span>). The cycle of <em>T</em> contained within its largest component is called the <em>deepest</em> one. For any <span><math><mi>T</mi><mo>∈</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, let <span><math><msub><mrow><mi>ν</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>=</mo><msub><mrow><mi>ν</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>T</mi><mo>)</mo></math></span> denote the length of this cycle. In this paper, we establish the convergence in distribution of <span><math><msub><mrow><mi>ν</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>/</mo><msqrt><mrow><mi>n</mi></mrow></msqrt></math></span> and find the limits of its expectation and variance as <span><math><mi>n</mi><mo>→</mo><mo>∞</mo></math></span>. For <em>n</em> large enough, we also show that nearly 55% of all cyclic vertices of a random mapping <span><math><mi>T</mi><mo>∈</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> lie in its deepest cycle and that a vertex from the longest cycle of <em>T</em> does not belong to its largest component with approximate probability 0.075.</p></div>\",\"PeriodicalId\":50230,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series A\",\"volume\":\"206 \",\"pages\":\"Article 105875\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series A\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097316524000141\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series A","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097316524000141","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 Tn 是所有映射 T:{1,2,...,n}→{1,2,...,n} 的集合。T 的对应图是互不相连的单环部分的联合。我们假设每个 T∈Tn 都是均匀随机选择的(即概率为 n-n)。T 的最大分量所包含的循环称为最深循环。对于任意 T∈Tn,让 νn=νn(T) 表示这个循环的长度。在本文中,我们建立了 νn/n 分布的收敛性,并找到了其期望和方差随 n→∞ 的极限。对于足够大的 n,我们还证明了在随机映射 T∈Tn 的所有循环顶点中,有近 55% 的顶点位于其最深的循环中,并且 T 最长循环中的顶点不属于其最大分量的概率近似为 0.075。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the deepest cycle of a random mapping

Let Tn be the set of all mappings T:{1,2,,n}{1,2,,n}. The corresponding graph of T is a union of disjoint connected unicyclic components. We assume that each TTn is chosen uniformly at random (i.e., with probability nn). The cycle of T contained within its largest component is called the deepest one. For any TTn, let νn=νn(T) denote the length of this cycle. In this paper, we establish the convergence in distribution of νn/n and find the limits of its expectation and variance as n. For n large enough, we also show that nearly 55% of all cyclic vertices of a random mapping TTn lie in its deepest cycle and that a vertex from the longest cycle of T does not belong to its largest component with approximate probability 0.075.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
9.10%
发文量
94
审稿时长
12 months
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research concerned with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series A is concerned primarily with structures, designs, and applications of combinatorics and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信