Zequn Lv , Ervin Győri , Zhen He , Nika Salia , Casey Tompkins , Xiutao Zhu
{"title":"平面图中偶数循环的最大份数","authors":"Zequn Lv , Ervin Győri , Zhen He , Nika Salia , Casey Tompkins , Xiutao Zhu","doi":"10.1016/j.jctb.2024.01.005","DOIUrl":null,"url":null,"abstract":"<div><p>We resolve a conjecture of Cox and Martin by determining asymptotically for every <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> the maximum number of copies of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msub></math></span> in an <em>n</em>-vertex planar graph.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The maximum number of copies of an even cycle in a planar graph\",\"authors\":\"Zequn Lv , Ervin Győri , Zhen He , Nika Salia , Casey Tompkins , Xiutao Zhu\",\"doi\":\"10.1016/j.jctb.2024.01.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We resolve a conjecture of Cox and Martin by determining asymptotically for every <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> the maximum number of copies of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msub></math></span> in an <em>n</em>-vertex planar graph.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000066\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000066","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
我们解决了考克斯和马丁的一个猜想,即在 n 个顶点的平面图中,渐近地确定每 k≥2 个顶点的 C2k 的最大副本数。
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.