Zequn Lv , Ervin Győri , Zhen He , Nika Salia , Casey Tompkins , Xiutao Zhu
{"title":"平面图中偶数循环的最大份数","authors":"Zequn Lv , Ervin Győri , Zhen He , Nika Salia , Casey Tompkins , Xiutao Zhu","doi":"10.1016/j.jctb.2024.01.005","DOIUrl":null,"url":null,"abstract":"<div><p>We resolve a conjecture of Cox and Martin by determining asymptotically for every <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> the maximum number of copies of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msub></math></span> in an <em>n</em>-vertex planar graph.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"167 ","pages":"Pages 15-22"},"PeriodicalIF":1.2000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The maximum number of copies of an even cycle in a planar graph\",\"authors\":\"Zequn Lv , Ervin Győri , Zhen He , Nika Salia , Casey Tompkins , Xiutao Zhu\",\"doi\":\"10.1016/j.jctb.2024.01.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We resolve a conjecture of Cox and Martin by determining asymptotically for every <span><math><mi>k</mi><mo>≥</mo><mn>2</mn></math></span> the maximum number of copies of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>k</mi></mrow></msub></math></span> in an <em>n</em>-vertex planar graph.</p></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"167 \",\"pages\":\"Pages 15-22\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895624000066\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895624000066","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们解决了考克斯和马丁的一个猜想,即在 n 个顶点的平面图中,渐近地确定每 k≥2 个顶点的 C2k 的最大副本数。
期刊介绍:
The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.