Wan Nurul Farah Wan Azmi , Thulasyammal Ramiah Pillai , Mohd Talib Latif , Rafiza Shaharudin , Shajan Koshy
{"title":"开发土地利用回归模型以估算马来西亚半岛的颗粒物(PM10)和二氧化氮(NO2)浓度","authors":"Wan Nurul Farah Wan Azmi , Thulasyammal Ramiah Pillai , Mohd Talib Latif , Rafiza Shaharudin , Shajan Koshy","doi":"10.1016/j.aeaoa.2024.100244","DOIUrl":null,"url":null,"abstract":"<div><p>Nowadays, exposure modelling has become the preferred method for assessing human air pollution exposure due to its capability to predict air pollution under various conditions. The land use regression model (LUR) is a widely conducted model utilized to estimate air pollutants especially in unmonitored locations. However, the application of the model is still lacking in developing countries, especially in the Southeast Asia region. Therefore, this study was conducted to develop the LUR model to estimate PM<sub>10</sub> and NO<sub>2</sub> concentrations in Peninsular Malaysia. Multiple linear regression with a supervised forward stepwise was used to develop the models, and the models were validated using the leave-out-one cross-validation (LOOCV) approach. Results showed that the LUR model of PM<sub>10</sub> explained 58.5% variation, while the NO<sub>2</sub> LUR model described 86.8% variation. The difference value of PM<sub>10</sub> model R<sup>2</sup> and LOOCV R<sup>2</sup> were between 0.1% and 1.2 %, and the NO<sub>2</sub> models were between 0.01% and 0.08% depicting the robust stability of the models. Both models indicated that increased road and industrial areas significantly influence PM<sub>10</sub> and NO<sub>2</sub> concentrations. Nevertheless, more studies on the LUR model should be conducted in developing countries to assess the model's applicability in the region.</p></div>","PeriodicalId":37150,"journal":{"name":"Atmospheric Environment: X","volume":"21 ","pages":"Article 100244"},"PeriodicalIF":3.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259016212400011X/pdfft?md5=6a523530549f50991ed1ba4d10108736&pid=1-s2.0-S259016212400011X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Development of land use regression model to estimate particulate matter (PM10) and nitrogen dioxide (NO2) concentrations in Peninsular Malaysia\",\"authors\":\"Wan Nurul Farah Wan Azmi , Thulasyammal Ramiah Pillai , Mohd Talib Latif , Rafiza Shaharudin , Shajan Koshy\",\"doi\":\"10.1016/j.aeaoa.2024.100244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Nowadays, exposure modelling has become the preferred method for assessing human air pollution exposure due to its capability to predict air pollution under various conditions. The land use regression model (LUR) is a widely conducted model utilized to estimate air pollutants especially in unmonitored locations. However, the application of the model is still lacking in developing countries, especially in the Southeast Asia region. Therefore, this study was conducted to develop the LUR model to estimate PM<sub>10</sub> and NO<sub>2</sub> concentrations in Peninsular Malaysia. Multiple linear regression with a supervised forward stepwise was used to develop the models, and the models were validated using the leave-out-one cross-validation (LOOCV) approach. Results showed that the LUR model of PM<sub>10</sub> explained 58.5% variation, while the NO<sub>2</sub> LUR model described 86.8% variation. The difference value of PM<sub>10</sub> model R<sup>2</sup> and LOOCV R<sup>2</sup> were between 0.1% and 1.2 %, and the NO<sub>2</sub> models were between 0.01% and 0.08% depicting the robust stability of the models. Both models indicated that increased road and industrial areas significantly influence PM<sub>10</sub> and NO<sub>2</sub> concentrations. Nevertheless, more studies on the LUR model should be conducted in developing countries to assess the model's applicability in the region.</p></div>\",\"PeriodicalId\":37150,\"journal\":{\"name\":\"Atmospheric Environment: X\",\"volume\":\"21 \",\"pages\":\"Article 100244\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S259016212400011X/pdfft?md5=6a523530549f50991ed1ba4d10108736&pid=1-s2.0-S259016212400011X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Environment: X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S259016212400011X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259016212400011X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
如今,暴露模型已成为评估人类空气污染暴露的首选方法,因为它能够预测各种条件下的空气污染。土地利用回归模型(LUR)是一种广泛使用的模型,可用于估算空气污染物,尤其是在未监测地点。然而,该模型在发展中国家,尤其是东南亚地区仍缺乏应用。因此,本研究开发了 LUR 模型来估算马来西亚半岛的 PM10 和 NO2 浓度。研究采用了有监督的正向逐步法进行多元线性回归来建立模型,并使用留空交叉验证(LOOCV)方法对模型进行了验证。结果表明,PM10 的 LUR 模型解释了 58.5% 的变化,而 NO2 LUR 模型则描述了 86.8% 的变化。PM10 模型 R2 与 LOOCV R2 的差值介于 0.1% 与 1.2 % 之间,而 NO2 模型的差值介于 0.01% 与 0.08% 之间,说明模型具有很强的稳定性。两个模型都表明,道路和工业区的增加对 PM10 和 NO2 浓度有显著影响。不过,应在发展中国家开展更多关于 LUR 模型的研究,以评估该模型在该地区的适用性。
Development of land use regression model to estimate particulate matter (PM10) and nitrogen dioxide (NO2) concentrations in Peninsular Malaysia
Nowadays, exposure modelling has become the preferred method for assessing human air pollution exposure due to its capability to predict air pollution under various conditions. The land use regression model (LUR) is a widely conducted model utilized to estimate air pollutants especially in unmonitored locations. However, the application of the model is still lacking in developing countries, especially in the Southeast Asia region. Therefore, this study was conducted to develop the LUR model to estimate PM10 and NO2 concentrations in Peninsular Malaysia. Multiple linear regression with a supervised forward stepwise was used to develop the models, and the models were validated using the leave-out-one cross-validation (LOOCV) approach. Results showed that the LUR model of PM10 explained 58.5% variation, while the NO2 LUR model described 86.8% variation. The difference value of PM10 model R2 and LOOCV R2 were between 0.1% and 1.2 %, and the NO2 models were between 0.01% and 0.08% depicting the robust stability of the models. Both models indicated that increased road and industrial areas significantly influence PM10 and NO2 concentrations. Nevertheless, more studies on the LUR model should be conducted in developing countries to assess the model's applicability in the region.