Erik Stein , Rongqing Chen , Alberto Battistel , Sabine Krueger-Ziolek , Knut Moeller
{"title":"通过电阻抗断层扫描中的谐波分析,以电压为基础分离呼吸和心脏活动","authors":"Erik Stein , Rongqing Chen , Alberto Battistel , Sabine Krueger-Ziolek , Knut Moeller","doi":"10.1016/j.ifacsc.2024.100248","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to improve the accuracy of Electrical Impedance Tomography (EIT) measurements for monitoring ventilation and cardiac signal in medical imaging by proposing a new signal separation approach that does not require contrast agents. Conventionally, contrast agents like high-conductive saline solutions are used for signal separation in EIT measurements. This study uses a harmonic analysis on EIT raw voltage data to separate the ventilation- and cardiac-related signals (early separation). It evaluates its efficacy with a simulation model at low (1%) and high (10%) superimposed additive noise levels against the already published harmonic analysis at pixel level after EIT image reconstruction (late separation). The findings indicate that the voltage-based harmonic analysis approach, i.e., early separation, provides reliable signal separation, especially under high noise conditions, compared to the late separation. This method enables the possibility of incorporating independent cardiac-specific or ventilation-specific prior knowledge into the image reconstruction process, potentially improving the resulting images.</p></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"27 ","pages":"Article 100248"},"PeriodicalIF":1.8000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2468601824000099/pdfft?md5=884ea48403ab5ce22c593036379e1e22&pid=1-s2.0-S2468601824000099-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Voltage-based separation of respiration and cardiac activity by harmonic analysis in electrical impedance tomography\",\"authors\":\"Erik Stein , Rongqing Chen , Alberto Battistel , Sabine Krueger-Ziolek , Knut Moeller\",\"doi\":\"10.1016/j.ifacsc.2024.100248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study aims to improve the accuracy of Electrical Impedance Tomography (EIT) measurements for monitoring ventilation and cardiac signal in medical imaging by proposing a new signal separation approach that does not require contrast agents. Conventionally, contrast agents like high-conductive saline solutions are used for signal separation in EIT measurements. This study uses a harmonic analysis on EIT raw voltage data to separate the ventilation- and cardiac-related signals (early separation). It evaluates its efficacy with a simulation model at low (1%) and high (10%) superimposed additive noise levels against the already published harmonic analysis at pixel level after EIT image reconstruction (late separation). The findings indicate that the voltage-based harmonic analysis approach, i.e., early separation, provides reliable signal separation, especially under high noise conditions, compared to the late separation. This method enables the possibility of incorporating independent cardiac-specific or ventilation-specific prior knowledge into the image reconstruction process, potentially improving the resulting images.</p></div>\",\"PeriodicalId\":29926,\"journal\":{\"name\":\"IFAC Journal of Systems and Control\",\"volume\":\"27 \",\"pages\":\"Article 100248\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2468601824000099/pdfft?md5=884ea48403ab5ce22c593036379e1e22&pid=1-s2.0-S2468601824000099-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC Journal of Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468601824000099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601824000099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
本研究旨在通过提出一种无需造影剂的新信号分离方法,提高医学成像中用于监测通气和心脏信号的电阻抗断层扫描(EIT)测量的准确性。传统上,在 EIT 测量中使用高导电盐溶液等造影剂进行信号分离。本研究利用 EIT 原始电压数据的谐波分析来分离通气和心脏相关信号(早期分离)。在 EIT 图像重建(后期分离)后,利用模拟模型对像素级谐波分析与已发表的低叠加噪声(1%)和高叠加噪声(10%)进行对比,评估其有效性。研究结果表明,与后期分离相比,基于电压的谐波分析方法(即早期分离)可提供可靠的信号分离,尤其是在高噪声条件下。这种方法可以将独立的心脏特异性或通气特异性先验知识纳入图像重建过程,从而改善图像效果。
Voltage-based separation of respiration and cardiac activity by harmonic analysis in electrical impedance tomography
This study aims to improve the accuracy of Electrical Impedance Tomography (EIT) measurements for monitoring ventilation and cardiac signal in medical imaging by proposing a new signal separation approach that does not require contrast agents. Conventionally, contrast agents like high-conductive saline solutions are used for signal separation in EIT measurements. This study uses a harmonic analysis on EIT raw voltage data to separate the ventilation- and cardiac-related signals (early separation). It evaluates its efficacy with a simulation model at low (1%) and high (10%) superimposed additive noise levels against the already published harmonic analysis at pixel level after EIT image reconstruction (late separation). The findings indicate that the voltage-based harmonic analysis approach, i.e., early separation, provides reliable signal separation, especially under high noise conditions, compared to the late separation. This method enables the possibility of incorporating independent cardiac-specific or ventilation-specific prior knowledge into the image reconstruction process, potentially improving the resulting images.