富勒烯(C60)作为抗癌药物阿昔替尼纳米载体的理论研究

IF 3.1 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Saied Jamaladdin Emamjome Koohbanani, Sayed Ali Ahmadi, Dadkhoda Ghazanfari, Enayatollah Sheikhhosseini
{"title":"富勒烯(C60)作为抗癌药物阿昔替尼纳米载体的理论研究","authors":"Saied Jamaladdin Emamjome Koohbanani,&nbsp;Sayed Ali Ahmadi,&nbsp;Dadkhoda Ghazanfari,&nbsp;Enayatollah Sheikhhosseini","doi":"10.1016/j.cartre.2024.100332","DOIUrl":null,"url":null,"abstract":"<div><p>Axitinib, marketed as Inlyta, finds various medical applications in the treatment of conditions such as breast cancer, myeloid leukemia, and juvenile myelomonocytic leukemia. Initially, the synthesis of this cytidine analog, and its deoxy derivative decitabine, was carried out in Czechoslovakia to explore their potential as chemotherapeutic agents for cancer treatment. Recent research has been focused on understanding the reactivity and chemical structure of Axitinib, which are believed to contribute to its anticancer properties. As part of this investigation, the adsorption process of Axitinib onto a fullerene (C60) adsorbent in the gas and water phases was examined using the DFT/B3LYP/6-311+<em>G</em>(d, p) method. This analysis involved the assessment of the adsorption energy and a chemical perspective on the interaction between Axitinib and the adsorbent molecule. Furthermore, various thermodynamic characteristics, including Gibbs free energy (-4004.73 kJ), Enthalpy (-4004.52 kJ), and Entropy (709.79 J/mol-kelvin), as well as thermodynamic capacity (349.69 J/mol-kelvin), were calculated. Additionally, key electronic parameters, such as σ(0.20), µ(-2.97), ω(0.88), χ(2.97), and η(5.01) (all in eV), were estimated to elucidate the compound's chemical properties. The calculation of the HOMO (-7.99 eV) and LUMO (2.04 eV) energy levels revealed six regions of chemical activity for Axitinib, confirming its thermodynamic stability and indicating the significance of this adsorption process in delivering Axitinib to biological mechanisms.</p></div>","PeriodicalId":52629,"journal":{"name":"Carbon Trends","volume":"14 ","pages":"Article 100332"},"PeriodicalIF":3.1000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667056924000130/pdfft?md5=246a669c2aff52e7eaf9a9804cef6f31&pid=1-s2.0-S2667056924000130-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Theoretical investigation of fullerene (C60) as nano carrier for anti-cancer drug Axitinib\",\"authors\":\"Saied Jamaladdin Emamjome Koohbanani,&nbsp;Sayed Ali Ahmadi,&nbsp;Dadkhoda Ghazanfari,&nbsp;Enayatollah Sheikhhosseini\",\"doi\":\"10.1016/j.cartre.2024.100332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Axitinib, marketed as Inlyta, finds various medical applications in the treatment of conditions such as breast cancer, myeloid leukemia, and juvenile myelomonocytic leukemia. Initially, the synthesis of this cytidine analog, and its deoxy derivative decitabine, was carried out in Czechoslovakia to explore their potential as chemotherapeutic agents for cancer treatment. Recent research has been focused on understanding the reactivity and chemical structure of Axitinib, which are believed to contribute to its anticancer properties. As part of this investigation, the adsorption process of Axitinib onto a fullerene (C60) adsorbent in the gas and water phases was examined using the DFT/B3LYP/6-311+<em>G</em>(d, p) method. This analysis involved the assessment of the adsorption energy and a chemical perspective on the interaction between Axitinib and the adsorbent molecule. Furthermore, various thermodynamic characteristics, including Gibbs free energy (-4004.73 kJ), Enthalpy (-4004.52 kJ), and Entropy (709.79 J/mol-kelvin), as well as thermodynamic capacity (349.69 J/mol-kelvin), were calculated. Additionally, key electronic parameters, such as σ(0.20), µ(-2.97), ω(0.88), χ(2.97), and η(5.01) (all in eV), were estimated to elucidate the compound's chemical properties. The calculation of the HOMO (-7.99 eV) and LUMO (2.04 eV) energy levels revealed six regions of chemical activity for Axitinib, confirming its thermodynamic stability and indicating the significance of this adsorption process in delivering Axitinib to biological mechanisms.</p></div>\",\"PeriodicalId\":52629,\"journal\":{\"name\":\"Carbon Trends\",\"volume\":\"14 \",\"pages\":\"Article 100332\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667056924000130/pdfft?md5=246a669c2aff52e7eaf9a9804cef6f31&pid=1-s2.0-S2667056924000130-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Trends\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667056924000130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Trends","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667056924000130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

阿西替尼(Axitinib),市场名为 Inlyta,在治疗乳腺癌、骨髓性白血病和幼年骨髓单核细胞白血病等疾病方面有多种医疗应用。最初,这种胞苷类似物及其脱氧衍生物地西他滨的合成是在捷克斯洛伐克进行的,目的是探索它们作为化疗药物治疗癌症的潜力。近期研究的重点是了解阿昔替尼的反应性和化学结构,据信这是其抗癌特性的原因。作为这项研究的一部分,我们使用 DFT/B3LYP/6-311+G(d, p) 方法研究了阿昔替尼在气相和水相富勒烯(C60)吸附剂上的吸附过程。该分析包括对吸附能的评估,以及从化学角度分析阿昔替尼与吸附剂分子之间的相互作用。此外,还计算了各种热力学特性,包括吉布斯自由能(-4004.73 kJ)、焓(-4004.52 kJ)和熵(709.79 J/mol-kelvin),以及热力学容量(349.69 J/mol-kelvin)。此外,还估算了σ(0.20)、µ(-2.97)、ω(0.88)、χ(2.97)和η(5.01)等关键电子参数(单位均为 eV),以阐明化合物的化学性质。对 HOMO(-7.99 eV)和 LUMO(2.04 eV)能级的计算揭示了阿西替尼的六个化学活性区域,证实了其热力学稳定性,并表明了这一吸附过程在将阿西替尼输送到生物机制中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Theoretical investigation of fullerene (C60) as nano carrier for anti-cancer drug Axitinib

Theoretical investigation of fullerene (C60) as nano carrier for anti-cancer drug Axitinib

Axitinib, marketed as Inlyta, finds various medical applications in the treatment of conditions such as breast cancer, myeloid leukemia, and juvenile myelomonocytic leukemia. Initially, the synthesis of this cytidine analog, and its deoxy derivative decitabine, was carried out in Czechoslovakia to explore their potential as chemotherapeutic agents for cancer treatment. Recent research has been focused on understanding the reactivity and chemical structure of Axitinib, which are believed to contribute to its anticancer properties. As part of this investigation, the adsorption process of Axitinib onto a fullerene (C60) adsorbent in the gas and water phases was examined using the DFT/B3LYP/6-311+G(d, p) method. This analysis involved the assessment of the adsorption energy and a chemical perspective on the interaction between Axitinib and the adsorbent molecule. Furthermore, various thermodynamic characteristics, including Gibbs free energy (-4004.73 kJ), Enthalpy (-4004.52 kJ), and Entropy (709.79 J/mol-kelvin), as well as thermodynamic capacity (349.69 J/mol-kelvin), were calculated. Additionally, key electronic parameters, such as σ(0.20), µ(-2.97), ω(0.88), χ(2.97), and η(5.01) (all in eV), were estimated to elucidate the compound's chemical properties. The calculation of the HOMO (-7.99 eV) and LUMO (2.04 eV) energy levels revealed six regions of chemical activity for Axitinib, confirming its thermodynamic stability and indicating the significance of this adsorption process in delivering Axitinib to biological mechanisms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Carbon Trends
Carbon Trends Materials Science-Materials Science (miscellaneous)
CiteScore
4.60
自引率
0.00%
发文量
88
审稿时长
77 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信