Sarah Piechowski, Lennard J Kalkoffen, Sibylle Benderoth, Oliver T Wolf, Jörn Rittweger, Daniel Aeschbach, Christian Mühl
{"title":"完全剥夺睡眠对人工飞船对接任务表现的影响。","authors":"Sarah Piechowski, Lennard J Kalkoffen, Sibylle Benderoth, Oliver T Wolf, Jörn Rittweger, Daniel Aeschbach, Christian Mühl","doi":"10.1038/s41526-024-00361-z","DOIUrl":null,"url":null,"abstract":"<p><p>Sleep deprivation and circadian rhythm disruptions are highly prevalent in shift workers, and also among astronauts. Resulting sleepiness can reduce cognitive performance, lead to catastrophic occupational events, and jeopardize space missions. We investigated whether 24 hours of total sleep deprivation would affect performance not only in the Psychomotor Vigilance Task (PVT), but also in a complex operational task, i.e. simulated manual spacecraft docking. Sixty-two healthy participants completed the manual docking simulation 6df and the PVT once after a night of total sleep deprivation and once after eight hours of scheduled sleep in a counterbalanced order. We assessed the impact of sleep deprivation on docking as well as PVT performance and investigated if sustained attention is an essential component of operational performance after sleep loss. The results showed that docking accuracy decreased significantly after sleep deprivation in comparison to the control condition, but only at difficult task levels. PVT performance deteriorated under sleep deprivation. Participants with larger impairments in PVT response speed after sleep deprivation also showed larger impairments in docking accuracy. In conclusion, sleep deprivation led to impaired 6df performance, which was partly explained by impairments in sustained attention. Elevated motivation levels due to the novelty and attractiveness of the task may have helped participants to compensate for the effects of sleepiness at easier task levels. Continued testing of manual docking skills could be a useful tool both to detect sleep loss-related impairments and assess astronauts' readiness for duty during long-duration missions.</p>","PeriodicalId":54263,"journal":{"name":"npj Microgravity","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10881462/pdf/","citationCount":"0","resultStr":"{\"title\":\"Effects of total sleep deprivation on performance in a manual spacecraft docking task.\",\"authors\":\"Sarah Piechowski, Lennard J Kalkoffen, Sibylle Benderoth, Oliver T Wolf, Jörn Rittweger, Daniel Aeschbach, Christian Mühl\",\"doi\":\"10.1038/s41526-024-00361-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Sleep deprivation and circadian rhythm disruptions are highly prevalent in shift workers, and also among astronauts. Resulting sleepiness can reduce cognitive performance, lead to catastrophic occupational events, and jeopardize space missions. We investigated whether 24 hours of total sleep deprivation would affect performance not only in the Psychomotor Vigilance Task (PVT), but also in a complex operational task, i.e. simulated manual spacecraft docking. Sixty-two healthy participants completed the manual docking simulation 6df and the PVT once after a night of total sleep deprivation and once after eight hours of scheduled sleep in a counterbalanced order. We assessed the impact of sleep deprivation on docking as well as PVT performance and investigated if sustained attention is an essential component of operational performance after sleep loss. The results showed that docking accuracy decreased significantly after sleep deprivation in comparison to the control condition, but only at difficult task levels. PVT performance deteriorated under sleep deprivation. Participants with larger impairments in PVT response speed after sleep deprivation also showed larger impairments in docking accuracy. In conclusion, sleep deprivation led to impaired 6df performance, which was partly explained by impairments in sustained attention. Elevated motivation levels due to the novelty and attractiveness of the task may have helped participants to compensate for the effects of sleepiness at easier task levels. Continued testing of manual docking skills could be a useful tool both to detect sleep loss-related impairments and assess astronauts' readiness for duty during long-duration missions.</p>\",\"PeriodicalId\":54263,\"journal\":{\"name\":\"npj Microgravity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10881462/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Microgravity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1038/s41526-024-00361-z\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Microgravity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s41526-024-00361-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Effects of total sleep deprivation on performance in a manual spacecraft docking task.
Sleep deprivation and circadian rhythm disruptions are highly prevalent in shift workers, and also among astronauts. Resulting sleepiness can reduce cognitive performance, lead to catastrophic occupational events, and jeopardize space missions. We investigated whether 24 hours of total sleep deprivation would affect performance not only in the Psychomotor Vigilance Task (PVT), but also in a complex operational task, i.e. simulated manual spacecraft docking. Sixty-two healthy participants completed the manual docking simulation 6df and the PVT once after a night of total sleep deprivation and once after eight hours of scheduled sleep in a counterbalanced order. We assessed the impact of sleep deprivation on docking as well as PVT performance and investigated if sustained attention is an essential component of operational performance after sleep loss. The results showed that docking accuracy decreased significantly after sleep deprivation in comparison to the control condition, but only at difficult task levels. PVT performance deteriorated under sleep deprivation. Participants with larger impairments in PVT response speed after sleep deprivation also showed larger impairments in docking accuracy. In conclusion, sleep deprivation led to impaired 6df performance, which was partly explained by impairments in sustained attention. Elevated motivation levels due to the novelty and attractiveness of the task may have helped participants to compensate for the effects of sleepiness at easier task levels. Continued testing of manual docking skills could be a useful tool both to detect sleep loss-related impairments and assess astronauts' readiness for duty during long-duration missions.
npj MicrogravityPhysics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
7.30
自引率
7.80%
发文量
50
审稿时长
9 weeks
期刊介绍:
A new open access, online-only, multidisciplinary research journal, npj Microgravity is dedicated to publishing the most important scientific advances in the life sciences, physical sciences, and engineering fields that are facilitated by spaceflight and analogue platforms.