{"title":"慢性肾病肌少症的药物治疗。","authors":"Ran-Hui Cha","doi":"10.23876/j.krcp.23.094","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammation, metabolic acidosis, renin-angiotensin system activation, insulin resistance, and impaired perfusion to skeletal muscles, among others, are possible causes of uremic sarcopenia. These conditions induce the activation of the nuclear factor-kappa B and mitogen-activated protein kinase pathways, adenosine triphosphate ubiquitin-proteasome system, and reactive oxygen species system, resulting in protein catabolism. Strategies for the prevention and treatment of sarcopenia in chronic kidney disease (CKD) are aerobic and resistance exercises along with nutritional interventions. Anabolic hormones have shown beneficial effects. Megestrol acetate increased weight, protein catabolic rate, and albumin concentration, and it increased intracellular water component and muscle mass. Vitamin D supplementation showed improvement in physical function, muscle strength, and muscle mass. Correction of metabolic acidosis showed an increase in protein intake, serum albumin levels, body weight, and mid-arm circumference. The kidney- gut-muscle axis indicates that dysbiosis and changes in gut-derived uremic toxins and short-chain fatty acids affect muscle mass, composition, strength, and functional capacity. Biotic supplements, AST-120 administration, hemodiafiltration, and preservation of residual renal function are alleged to reduce uremic toxins, including indoxyl sulfate (IS) and p-cresyl sulfate (PCS). Synbiotics reversed the microbiota change in CKD patients and decreased uremic toxins. AST-120 administration changed the overall gut microbiota composition in CKD. AST-120 prevented IS and PCS tissue accumulation, ameliorated muscle atrophy, improved exercise capacity and mitochondrial biogenesis, restored epithelial tight junction proteins, and reduced plasma endotoxin levels and markers of oxidative stress and inflammation. In a human study, the addition of AST-120 to standard treatment had modest beneficial effects on gait speed change and quality of life.</p>","PeriodicalId":17716,"journal":{"name":"Kidney Research and Clinical Practice","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11016676/pdf/","citationCount":"0","resultStr":"{\"title\":\"Pharmacologic therapeutics in sarcopenia with chronic kidney disease.\",\"authors\":\"Ran-Hui Cha\",\"doi\":\"10.23876/j.krcp.23.094\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inflammation, metabolic acidosis, renin-angiotensin system activation, insulin resistance, and impaired perfusion to skeletal muscles, among others, are possible causes of uremic sarcopenia. These conditions induce the activation of the nuclear factor-kappa B and mitogen-activated protein kinase pathways, adenosine triphosphate ubiquitin-proteasome system, and reactive oxygen species system, resulting in protein catabolism. Strategies for the prevention and treatment of sarcopenia in chronic kidney disease (CKD) are aerobic and resistance exercises along with nutritional interventions. Anabolic hormones have shown beneficial effects. Megestrol acetate increased weight, protein catabolic rate, and albumin concentration, and it increased intracellular water component and muscle mass. Vitamin D supplementation showed improvement in physical function, muscle strength, and muscle mass. Correction of metabolic acidosis showed an increase in protein intake, serum albumin levels, body weight, and mid-arm circumference. The kidney- gut-muscle axis indicates that dysbiosis and changes in gut-derived uremic toxins and short-chain fatty acids affect muscle mass, composition, strength, and functional capacity. Biotic supplements, AST-120 administration, hemodiafiltration, and preservation of residual renal function are alleged to reduce uremic toxins, including indoxyl sulfate (IS) and p-cresyl sulfate (PCS). Synbiotics reversed the microbiota change in CKD patients and decreased uremic toxins. AST-120 administration changed the overall gut microbiota composition in CKD. AST-120 prevented IS and PCS tissue accumulation, ameliorated muscle atrophy, improved exercise capacity and mitochondrial biogenesis, restored epithelial tight junction proteins, and reduced plasma endotoxin levels and markers of oxidative stress and inflammation. In a human study, the addition of AST-120 to standard treatment had modest beneficial effects on gait speed change and quality of life.</p>\",\"PeriodicalId\":17716,\"journal\":{\"name\":\"Kidney Research and Clinical Practice\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11016676/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kidney Research and Clinical Practice\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.23876/j.krcp.23.094\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/2/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"UROLOGY & NEPHROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kidney Research and Clinical Practice","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.23876/j.krcp.23.094","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0
摘要
炎症、代谢性酸中毒、肾素-血管紧张素系统激活、胰岛素抵抗和骨骼肌灌注受损等,都可能是导致尿毒症性肌肉疏松症的原因。这些情况会激活核因子卡巴 B 和丝裂原活化蛋白激酶途径、三磷酸腺苷泛素蛋白酶体系统和活性氧系统,导致蛋白质分解。预防和治疗慢性肾脏病(CKD)患者肌肉疏松症的策略是进行有氧运动和阻力运动,同时进行营养干预。合成代谢荷尔蒙已显示出有益的作用。醋酸甲地孕酮能增加体重、蛋白质分解代谢率和白蛋白浓度,还能增加细胞内水分成分和肌肉质量。维生素 D 补充剂可改善身体机能、肌肉力量和肌肉质量。纠正代谢性酸中毒后,蛋白质摄入量、血清白蛋白水平、体重和中臂围均有所增加。肾脏-肠道-肌肉轴表明,肠道菌群失调以及源自肠道的尿毒症毒素和短链脂肪酸的变化会影响肌肉质量、组成、力量和功能能力。据称,生物补充剂、AST-120 给药、血液滤过和保留残余肾功能可减少尿毒症毒素,包括硫酸吲哚酯(IS)和硫酸对甲酚酯(PCS)。合成益生菌能逆转慢性肾功能衰竭患者的微生物群变化,减少尿毒症毒素。服用 AST-120 改变了 CKD 患者的整体肠道微生物群组成。AST-120 可防止 IS 和 PCA 组织积累,改善肌肉萎缩,提高运动能力和线粒体生物生成,恢复上皮紧密连接蛋白,降低血浆内毒素水平以及氧化应激和炎症指标。在一项人体研究中,在标准治疗的基础上添加 AST-120 对步速变化和生活质量产生了适度的有益影响。
Pharmacologic therapeutics in sarcopenia with chronic kidney disease.
Inflammation, metabolic acidosis, renin-angiotensin system activation, insulin resistance, and impaired perfusion to skeletal muscles, among others, are possible causes of uremic sarcopenia. These conditions induce the activation of the nuclear factor-kappa B and mitogen-activated protein kinase pathways, adenosine triphosphate ubiquitin-proteasome system, and reactive oxygen species system, resulting in protein catabolism. Strategies for the prevention and treatment of sarcopenia in chronic kidney disease (CKD) are aerobic and resistance exercises along with nutritional interventions. Anabolic hormones have shown beneficial effects. Megestrol acetate increased weight, protein catabolic rate, and albumin concentration, and it increased intracellular water component and muscle mass. Vitamin D supplementation showed improvement in physical function, muscle strength, and muscle mass. Correction of metabolic acidosis showed an increase in protein intake, serum albumin levels, body weight, and mid-arm circumference. The kidney- gut-muscle axis indicates that dysbiosis and changes in gut-derived uremic toxins and short-chain fatty acids affect muscle mass, composition, strength, and functional capacity. Biotic supplements, AST-120 administration, hemodiafiltration, and preservation of residual renal function are alleged to reduce uremic toxins, including indoxyl sulfate (IS) and p-cresyl sulfate (PCS). Synbiotics reversed the microbiota change in CKD patients and decreased uremic toxins. AST-120 administration changed the overall gut microbiota composition in CKD. AST-120 prevented IS and PCS tissue accumulation, ameliorated muscle atrophy, improved exercise capacity and mitochondrial biogenesis, restored epithelial tight junction proteins, and reduced plasma endotoxin levels and markers of oxidative stress and inflammation. In a human study, the addition of AST-120 to standard treatment had modest beneficial effects on gait speed change and quality of life.
期刊介绍:
Kidney Research and Clinical Practice (formerly The Korean Journal of Nephrology; ISSN 1975-9460, launched in 1982), the official journal of the Korean Society of Nephrology, is an international, peer-reviewed journal published in English. Its ISO abbreviation is Kidney Res Clin Pract. To provide an efficient venue for dissemination of knowledge and discussion of topics related to basic renal science and clinical practice, the journal offers open access (free submission and free access) and considers articles on all aspects of clinical nephrology and hypertension as well as related molecular genetics, anatomy, pathology, physiology, pharmacology, and immunology. In particular, the journal focuses on translational renal research that helps bridging laboratory discovery with the diagnosis and treatment of human kidney disease. Topics covered include basic science with possible clinical applicability and papers on the pathophysiological basis of disease processes of the kidney. Original researches from areas of intervention nephrology or dialysis access are also welcomed. Major article types considered for publication include original research and reviews on current topics of interest. Accepted manuscripts are granted free online open-access immediately after publication, which permits its users to read, download, copy, distribute, print, search, or link to the full texts of its articles to facilitate access to a broad readership. Circulation number of print copies is 1,600.