Stefano Marletta, Albino Eccher, Filippo Maria Martelli, Nicola Santonicco, Ilaria Girolami, Aldo Scarpa, Fabio Pagni, Vincenzo L'Imperio, Liron Pantanowitz, Stefano Gobbo, Davide Seminati, Angelo Paolo Dei Tos, Anil Parwani
{"title":"基于人工智能的前列腺癌诊断算法:系统综述。","authors":"Stefano Marletta, Albino Eccher, Filippo Maria Martelli, Nicola Santonicco, Ilaria Girolami, Aldo Scarpa, Fabio Pagni, Vincenzo L'Imperio, Liron Pantanowitz, Stefano Gobbo, Davide Seminati, Angelo Paolo Dei Tos, Anil Parwani","doi":"10.1093/ajcp/aqad182","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The high incidence of prostate cancer causes prostatic samples to significantly affect pathology laboratories workflow and turnaround times (TATs). Whole-slide imaging (WSI) and artificial intelligence (AI) have both gained approval for primary diagnosis in prostate pathology, providing physicians with novel tools for their daily routine.</p><p><strong>Methods: </strong>A systematic review according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines was carried out in electronic databases to gather the available evidence on the application of AI-based algorithms to prostate cancer.</p><p><strong>Results: </strong>Of 6290 articles, 80 were included, mostly (59%) dealing with biopsy specimens. Glass slides were digitized to WSI in most studies (89%), roughly two-thirds of which (66%) exploited convolutional neural networks for computational analysis. The algorithms achieved good to excellent results about cancer detection and grading, along with significantly reduced TATs. Furthermore, several studies showed a relevant correlation between AI-identified histologic features and prognostic predictive variables such as biochemical recurrence, extraprostatic extension, perineural invasion, and disease-free survival.</p><p><strong>Conclusions: </strong>The published evidence suggests that AI can be reliably used for prostate cancer detection and grading, assisting pathologists in the time-consuming screening of slides. Further technologic improvement would help widening AI's adoption in prostate pathology, as well as expanding its prognostic predictive potential.</p>","PeriodicalId":7506,"journal":{"name":"American journal of clinical pathology","volume":" ","pages":"526-534"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Artificial intelligence-based algorithms for the diagnosis of prostate cancer: A systematic review.\",\"authors\":\"Stefano Marletta, Albino Eccher, Filippo Maria Martelli, Nicola Santonicco, Ilaria Girolami, Aldo Scarpa, Fabio Pagni, Vincenzo L'Imperio, Liron Pantanowitz, Stefano Gobbo, Davide Seminati, Angelo Paolo Dei Tos, Anil Parwani\",\"doi\":\"10.1093/ajcp/aqad182\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>The high incidence of prostate cancer causes prostatic samples to significantly affect pathology laboratories workflow and turnaround times (TATs). Whole-slide imaging (WSI) and artificial intelligence (AI) have both gained approval for primary diagnosis in prostate pathology, providing physicians with novel tools for their daily routine.</p><p><strong>Methods: </strong>A systematic review according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines was carried out in electronic databases to gather the available evidence on the application of AI-based algorithms to prostate cancer.</p><p><strong>Results: </strong>Of 6290 articles, 80 were included, mostly (59%) dealing with biopsy specimens. Glass slides were digitized to WSI in most studies (89%), roughly two-thirds of which (66%) exploited convolutional neural networks for computational analysis. The algorithms achieved good to excellent results about cancer detection and grading, along with significantly reduced TATs. Furthermore, several studies showed a relevant correlation between AI-identified histologic features and prognostic predictive variables such as biochemical recurrence, extraprostatic extension, perineural invasion, and disease-free survival.</p><p><strong>Conclusions: </strong>The published evidence suggests that AI can be reliably used for prostate cancer detection and grading, assisting pathologists in the time-consuming screening of slides. Further technologic improvement would help widening AI's adoption in prostate pathology, as well as expanding its prognostic predictive potential.</p>\",\"PeriodicalId\":7506,\"journal\":{\"name\":\"American journal of clinical pathology\",\"volume\":\" \",\"pages\":\"526-534\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of clinical pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/ajcp/aqad182\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of clinical pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/ajcp/aqad182","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PATHOLOGY","Score":null,"Total":0}
Artificial intelligence-based algorithms for the diagnosis of prostate cancer: A systematic review.
Objectives: The high incidence of prostate cancer causes prostatic samples to significantly affect pathology laboratories workflow and turnaround times (TATs). Whole-slide imaging (WSI) and artificial intelligence (AI) have both gained approval for primary diagnosis in prostate pathology, providing physicians with novel tools for their daily routine.
Methods: A systematic review according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines was carried out in electronic databases to gather the available evidence on the application of AI-based algorithms to prostate cancer.
Results: Of 6290 articles, 80 were included, mostly (59%) dealing with biopsy specimens. Glass slides were digitized to WSI in most studies (89%), roughly two-thirds of which (66%) exploited convolutional neural networks for computational analysis. The algorithms achieved good to excellent results about cancer detection and grading, along with significantly reduced TATs. Furthermore, several studies showed a relevant correlation between AI-identified histologic features and prognostic predictive variables such as biochemical recurrence, extraprostatic extension, perineural invasion, and disease-free survival.
Conclusions: The published evidence suggests that AI can be reliably used for prostate cancer detection and grading, assisting pathologists in the time-consuming screening of slides. Further technologic improvement would help widening AI's adoption in prostate pathology, as well as expanding its prognostic predictive potential.
期刊介绍:
The American Journal of Clinical Pathology (AJCP) is the official journal of the American Society for Clinical Pathology and the Academy of Clinical Laboratory Physicians and Scientists. It is a leading international journal for publication of articles concerning novel anatomic pathology and laboratory medicine observations on human disease. AJCP emphasizes articles that focus on the application of evolving technologies for the diagnosis and characterization of diseases and conditions, as well as those that have a direct link toward improving patient care.