三相光催化水气变换反应制氢,增强气-液-固界面的界面扩散能力

Huige Chen, Zhenhua Li, Chao Zhou, Run Shi and Tierui Zhang
{"title":"三相光催化水气变换反应制氢,增强气-液-固界面的界面扩散能力","authors":"Huige Chen, Zhenhua Li, Chao Zhou, Run Shi and Tierui Zhang","doi":"10.1039/D3IM00135K","DOIUrl":null,"url":null,"abstract":"<p>The exothermic characteristic of the water-gas-shift (WGS) reaction, coupled with the thermodynamic constraints at elevated temperatures, has spurred a research inclination towards conducting the WGS reaction at reduced temperatures. Nonetheless, the challenge of achieving efficient mass transfer between gaseous CO and liquid H<small><sub>2</sub></small>O at the photocatalytic interface under mild reaction conditions hinders the advancement of the photocatalytic WGS reaction. In this study, we introduce a gas–liquid–solid triphase photocatalytic WGS reaction system. This system facilitates swift transportation of gaseous CO to the photocatalyst's surface while ensuring a consistent water supply. Among various metal-loaded TiO<small><sub>2</sub></small> photocatalysts, Rh/TiO<small><sub>2</sub></small> nanoparticles positioned at the triphase interface demonstrated an impressive H<small><sub>2</sub></small> production rate of 27.60 mmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>. This rate is roughly 2 and 10 times greater than that observed in the liquid–solid and gas–solid diphase systems. Additionally, finite element simulations indicate that the concentrations of CO and H<small><sub>2</sub></small>O at the gas–liquid–solid interface remain stable. This suggests that the triphase interface establishes a conducive microenvironment with sufficient CO and H<small><sub>2</sub></small>O supply to the surface of photocatalysts. These insights offer a foundational approach to enhance the interfacial mass transfer of gaseous CO and liquid H<small><sub>2</sub></small>O, thereby optimizing the photocatalytic WGS reaction's efficiency.</p><p>Keywords: Water-gas-shift; Photocatalysis; Triphase interface; Hydrogen evolution; TiO<small><sub>2</sub></small>.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/im/d3im00135k?page=search","citationCount":"0","resultStr":"{\"title\":\"Triphase photocatalytic water-gas-shift reaction for hydrogen production with enhanced interfacial diffusion at gas–liquid–solid interfaces†\",\"authors\":\"Huige Chen, Zhenhua Li, Chao Zhou, Run Shi and Tierui Zhang\",\"doi\":\"10.1039/D3IM00135K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The exothermic characteristic of the water-gas-shift (WGS) reaction, coupled with the thermodynamic constraints at elevated temperatures, has spurred a research inclination towards conducting the WGS reaction at reduced temperatures. Nonetheless, the challenge of achieving efficient mass transfer between gaseous CO and liquid H<small><sub>2</sub></small>O at the photocatalytic interface under mild reaction conditions hinders the advancement of the photocatalytic WGS reaction. In this study, we introduce a gas–liquid–solid triphase photocatalytic WGS reaction system. This system facilitates swift transportation of gaseous CO to the photocatalyst's surface while ensuring a consistent water supply. Among various metal-loaded TiO<small><sub>2</sub></small> photocatalysts, Rh/TiO<small><sub>2</sub></small> nanoparticles positioned at the triphase interface demonstrated an impressive H<small><sub>2</sub></small> production rate of 27.60 mmol g<small><sup>−1</sup></small> h<small><sup>−1</sup></small>. This rate is roughly 2 and 10 times greater than that observed in the liquid–solid and gas–solid diphase systems. Additionally, finite element simulations indicate that the concentrations of CO and H<small><sub>2</sub></small>O at the gas–liquid–solid interface remain stable. This suggests that the triphase interface establishes a conducive microenvironment with sufficient CO and H<small><sub>2</sub></small>O supply to the surface of photocatalysts. These insights offer a foundational approach to enhance the interfacial mass transfer of gaseous CO and liquid H<small><sub>2</sub></small>O, thereby optimizing the photocatalytic WGS reaction's efficiency.</p><p>Keywords: Water-gas-shift; Photocatalysis; Triphase interface; Hydrogen evolution; TiO<small><sub>2</sub></small>.</p>\",\"PeriodicalId\":29808,\"journal\":{\"name\":\"Industrial Chemistry & Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2024/im/d3im00135k?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Chemistry & Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/im/d3im00135k\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Chemistry & Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/im/d3im00135k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

水气变换(WGS)反应的放热特性,加上高温下的热力学限制,促使研究人员倾向于在较低温度下进行 WGS 反应。然而,在温和的反应条件下实现气态 CO 和液态 H2O 在光催化界面上的高效传质这一难题阻碍了光催化 WGS 反应的发展。在本研究中,我们介绍了一种气液固三相光催化 WGS 反应系统。该系统有助于将气态 CO 迅速输送到光催化剂表面,同时确保稳定的水供应。在各种负载金属的二氧化钛光催化剂中,位于三相界面的 Rh/TiO2 纳米粒子的 H2 产率高达 27.60 mmol g-1 h-1。这一速率比在液固和气固二相体系中观察到的速率分别高出约 2 倍和 10 倍。此外,有限元模拟表明,气-液-固界面的 CO 和 H2O 浓度保持稳定。这表明三相界面建立了一个有利的微环境,为光催化剂表面提供了充足的 CO 和 H2O。这些见解为加强气态 CO 和液态 H2O 的界面传质,从而优化光催化 WGS 反应的效率提供了一种基础方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Triphase photocatalytic water-gas-shift reaction for hydrogen production with enhanced interfacial diffusion at gas–liquid–solid interfaces†

Triphase photocatalytic water-gas-shift reaction for hydrogen production with enhanced interfacial diffusion at gas–liquid–solid interfaces†

The exothermic characteristic of the water-gas-shift (WGS) reaction, coupled with the thermodynamic constraints at elevated temperatures, has spurred a research inclination towards conducting the WGS reaction at reduced temperatures. Nonetheless, the challenge of achieving efficient mass transfer between gaseous CO and liquid H2O at the photocatalytic interface under mild reaction conditions hinders the advancement of the photocatalytic WGS reaction. In this study, we introduce a gas–liquid–solid triphase photocatalytic WGS reaction system. This system facilitates swift transportation of gaseous CO to the photocatalyst's surface while ensuring a consistent water supply. Among various metal-loaded TiO2 photocatalysts, Rh/TiO2 nanoparticles positioned at the triphase interface demonstrated an impressive H2 production rate of 27.60 mmol g−1 h−1. This rate is roughly 2 and 10 times greater than that observed in the liquid–solid and gas–solid diphase systems. Additionally, finite element simulations indicate that the concentrations of CO and H2O at the gas–liquid–solid interface remain stable. This suggests that the triphase interface establishes a conducive microenvironment with sufficient CO and H2O supply to the surface of photocatalysts. These insights offer a foundational approach to enhance the interfacial mass transfer of gaseous CO and liquid H2O, thereby optimizing the photocatalytic WGS reaction's efficiency.

Keywords: Water-gas-shift; Photocatalysis; Triphase interface; Hydrogen evolution; TiO2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Industrial Chemistry & Materials
Industrial Chemistry & Materials chemistry, chemical engineering, functional materials, energy, etc.-
自引率
0.00%
发文量
0
期刊介绍: Industrial Chemistry & Materials (ICM) publishes significant innovative research and major technological breakthroughs in all aspects of industrial chemistry and materials, with a particular focus on the important innovation of low-carbon chemical industry, energy and functional materials. By bringing researchers, engineers, and policymakers into one place, research is inspired, challenges are solved and the applications of science and technology are accelerated. The global editorial and advisory board members are valued experts in the community. With their support, the rigorous editorial practices and dissemination ensures your research is accessible and discoverable on a global scale. Industrial Chemistry & Materials publishes: ● Communications ● Full papers ● Minireviews ● Reviews ● Perspectives ● Comments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信