LncRNA HOTAIR通过招募SRSF1稳定MLXIPL mRNA,加速游离脂肪酸诱导的HepG2细胞炎症反应

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Bo Guo, Shengzhe Yan, Lei Zhai, Yanzhen Cheng
{"title":"LncRNA HOTAIR通过招募SRSF1稳定MLXIPL mRNA,加速游离脂肪酸诱导的HepG2细胞炎症反应","authors":"Bo Guo, Shengzhe Yan, Lei Zhai, Yanzhen Cheng","doi":"10.1007/s10616-023-00614-x","DOIUrl":null,"url":null,"abstract":"<p>LncRNA HOTAIR has been reported to be associated with metabolic diseases of the liver. However, the effect of HOTAIR on non-alcoholic fatty liver disease (NAFLD) inflammation and its potential mechanism have not been reported. Genes and proteins expression were detected by qRT-PCR and Western blot respectively. The level of inflammatory cytokines was assessed by ELISA. HepG2 cell viability was detected by MTT assay. TG level and lipid accumulation were measured by Assay Kit and Oil red O staining, respectively. Direct binding relationship between HOTAIR and Serine/arginine splicing factor 1 (SRSF1), SRSF1 and MLX interacting protein like (MLXIPL) were confirmed by RNA-pull down and RIP assay. HOTAIR was highly expressed in free fatty acids (FFA)-treated HepG2 cells. HOTAIR knockdown alleviated FFA-induced inflammation of HepG2 cells. Then further analysis showed that HOTAIR and SRSF1 had a mutual binding relationship, and HOTAIR maintained MLXIPL mRNA stability via recruiting SRSF1 in HepG2 cells. Moreover, the inhibitory effect of HOTAIR knockdown on FFA-induced inflammation in HepG2 cells was reversed by MLXIPL overexpression. HOTAIR accelerates inflammation of FFA-induced HepG2 cells by recruiting SRSF1 to stabilize MLXIPL mRNA, which will help to find new effective strategies for NAFLD therapy.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LncRNA HOTAIR accelerates free fatty acid-induced inflammatory response in HepG2 cells by recruiting SRSF1 to stabilize MLXIPL mRNA\",\"authors\":\"Bo Guo, Shengzhe Yan, Lei Zhai, Yanzhen Cheng\",\"doi\":\"10.1007/s10616-023-00614-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>LncRNA HOTAIR has been reported to be associated with metabolic diseases of the liver. However, the effect of HOTAIR on non-alcoholic fatty liver disease (NAFLD) inflammation and its potential mechanism have not been reported. Genes and proteins expression were detected by qRT-PCR and Western blot respectively. The level of inflammatory cytokines was assessed by ELISA. HepG2 cell viability was detected by MTT assay. TG level and lipid accumulation were measured by Assay Kit and Oil red O staining, respectively. Direct binding relationship between HOTAIR and Serine/arginine splicing factor 1 (SRSF1), SRSF1 and MLX interacting protein like (MLXIPL) were confirmed by RNA-pull down and RIP assay. HOTAIR was highly expressed in free fatty acids (FFA)-treated HepG2 cells. HOTAIR knockdown alleviated FFA-induced inflammation of HepG2 cells. Then further analysis showed that HOTAIR and SRSF1 had a mutual binding relationship, and HOTAIR maintained MLXIPL mRNA stability via recruiting SRSF1 in HepG2 cells. Moreover, the inhibitory effect of HOTAIR knockdown on FFA-induced inflammation in HepG2 cells was reversed by MLXIPL overexpression. HOTAIR accelerates inflammation of FFA-induced HepG2 cells by recruiting SRSF1 to stabilize MLXIPL mRNA, which will help to find new effective strategies for NAFLD therapy.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10616-023-00614-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10616-023-00614-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

据报道,LncRNA HOTAIR与肝脏代谢疾病有关。然而,HOTAIR对非酒精性脂肪肝(NAFLD)炎症的影响及其潜在机制尚未见报道。基因和蛋白质表达分别通过 qRT-PCR 和 Western 印迹进行检测。炎症细胞因子的水平通过 ELISA 进行评估。MTT 试验检测了 HepG2 细胞的活力。TG水平和脂质积累分别通过检测试剂盒和油红O染色法进行检测。通过RNA牵引和RIP实验证实了HOTAIR与丝氨酸/精氨酸剪接因子1(SRSF1)、SRSF1和MLX相互作用蛋白(MLXIPL)之间的直接结合关系。HOTAIR 在游离脂肪酸(FFA)处理的 HepG2 细胞中高表达。敲除 HOTAIR 可减轻游离脂肪酸诱导的 HepG2 细胞炎症反应。进一步的分析表明,HOTAIR与SRSF1存在相互结合的关系,HOTAIR通过招募SRSF1维持HepG2细胞中MLXIPL mRNA的稳定性。此外,HOTAIR敲除对FFA诱导的HepG2细胞炎症的抑制作用被MLXIPL过表达逆转。HOTAIR通过招募SRSF1来稳定MLXIPL mRNA,从而加速了FFA诱导的HepG2细胞的炎症反应,这将有助于为非酒精性脂肪肝的治疗找到新的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

LncRNA HOTAIR accelerates free fatty acid-induced inflammatory response in HepG2 cells by recruiting SRSF1 to stabilize MLXIPL mRNA

LncRNA HOTAIR accelerates free fatty acid-induced inflammatory response in HepG2 cells by recruiting SRSF1 to stabilize MLXIPL mRNA

LncRNA HOTAIR has been reported to be associated with metabolic diseases of the liver. However, the effect of HOTAIR on non-alcoholic fatty liver disease (NAFLD) inflammation and its potential mechanism have not been reported. Genes and proteins expression were detected by qRT-PCR and Western blot respectively. The level of inflammatory cytokines was assessed by ELISA. HepG2 cell viability was detected by MTT assay. TG level and lipid accumulation were measured by Assay Kit and Oil red O staining, respectively. Direct binding relationship between HOTAIR and Serine/arginine splicing factor 1 (SRSF1), SRSF1 and MLX interacting protein like (MLXIPL) were confirmed by RNA-pull down and RIP assay. HOTAIR was highly expressed in free fatty acids (FFA)-treated HepG2 cells. HOTAIR knockdown alleviated FFA-induced inflammation of HepG2 cells. Then further analysis showed that HOTAIR and SRSF1 had a mutual binding relationship, and HOTAIR maintained MLXIPL mRNA stability via recruiting SRSF1 in HepG2 cells. Moreover, the inhibitory effect of HOTAIR knockdown on FFA-induced inflammation in HepG2 cells was reversed by MLXIPL overexpression. HOTAIR accelerates inflammation of FFA-induced HepG2 cells by recruiting SRSF1 to stabilize MLXIPL mRNA, which will help to find new effective strategies for NAFLD therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信